Three-dimensional photographs of fossils (Part 2): Stereophotography of ancient micro-organisms

Dr Robert Sturm (Austria) In the past 60 years, microfossils have increasingly attracted the attention of earth scientists for several reasons. Firstly, they are highly useful in biostratigraphic respects; secondly, they can be easily determined by light- or electron-microscopic studies in most cases; and thirdly, sampling, preparation and storage of microfossils is carried out according to well-defined and mostly simple procedures. By definition, microfossils are the petrified relics of micro-organisms, which have mainly colonised aquatic habitats of the Tertiary or older epochs of earth history. Most of these ancient micro-organisms measured less than 1mm in size, so any scientific documentation of their remains requires a magnifying glass or, better still, a microscope. In certain cases, the size of microfossils is between 10µm and 100µm, which necessitates the use of an electron-microscope to elucidate their structure and to determine the species. Fossils measuring less than 10µm in size chiefly belong to another category of fossils, that is, nannofossils (for example, coccoliths). Typical representatives of microfossils include radiolaria, foraminifera, ostracods and diatoms, which may be used as index fossils within certain local or regional strata. A special role is taken by conodonts, which are small dental structures belonging to the so-called ‘conodont animal’. This is supposed to be distantly related to the lancet fish (Brachiostoma). While foraminifera, radiolaria and ostracods have colonised the earth with varying abundances since the Early Cambrian (570Ma), the occurrence of conodont animals seems to be restricted to the time period ranging from the Middle Cambrian (about 550Ma) … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Headbanging, rocking and moonwalking fossils

Mats E Eriksson (Sweden) One can never be too careful when given the opportunity to name a fossil organism that has proved to be new to science. In addition to a meticulous description and accompanying images showing the characteristic traits of the fossil, a unique and formal, Latinized scientific name must be attached to the creature. Many people, who get the chance honour an older colleague or famous palaeontologist, use the name of the discovery site or region to indicate the provenance of the fossil or, of course, christen the fossil after its characteristic looks (for example, Eriksson, 2017a). But you can also glance towards completely different areas, such as the art and music scenes. As a lifelong music fan and hobby musician (who, just like many of my peers, had aspiring yet quite ludicrous ‘rock star dreams’ in my teens) and a palaeontologist by profession, I cannot help myself but feeling blissful and delighted about the possibility of joining my two passions – ‘heavy’ music and palaeontology – in ‘unholy matrimony’. This has, among other things, led me to name some extinct polychaete annelid worms (bristle worms – the marine ‘cousins’ of earth worms and leeches) from the Silurian and Devonian periods after some of my favourite ‘metal’ musicians. These largely soft-bodied animals generally have poor preservation potential, although full body fossils are known from the fossil record. However, some representatives are equipped with resistant jaws (when preserved as microfossils they are known as scolecodonts) that, by contrast to … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Heavy Metal painter meets Heavy Metal palaeontologist: The conception of an unusual portrayal of the past

Mats E Eriksson (Sweden) Sometimes, the stars just seem to align perfectly and make you appreciate life more than at other times. You know those ephemeral moments when, all of a sudden, you find yourself in the midst of something that you would not have dared dream about. All your favourite aspects of life are suddenly combined into a giant melting pot and once the metaphoric molten steel hardens, you are left with the most stunning and unexpected new kind of precious metal. For me, this happens when music, arts and palaeontology unorthodoxly merge (Eriksson, 2016); and more specifically in this case, when exceptionally preserved, miniscule Cambrian arthropods had their first encounter with, and ‘sat for a portrait’ for, an iconic ‘metal’ painter. Besides my profession as a palaeontology professor at Lund University in Sweden, I have a major soft spot for the arts and music. As a matter of fact, in some aspects of my professional life, I have had (or created) the opportunity of actually combining these long love affairs. When it comes to scientific outreach, I am involved in a traveling exhibition on fossils named after rock stars (‘Rock Fossils’; Eriksson, 2014a) and I have named fossils in honour of some of my favourite musicians (Eriksson 2014a, 2017; Eriksson et al., 2017). I also record music based on palaeontological research results together, with established metal musicians (for example, Eriksson, 2014b; https://kalloprionkilmisteri.bandcamp.com/releases). Granted, this might be viewed as exceedingly eccentric and something that you perhaps think does not … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Tongue-twisting horrors – or beauty – of the names of organisms: A Linnaean heritage

Mats E Eriksson (Sweden) Sometimes, your name is a tell-tale sign of who you are, or your heritage if you wish. Not too long ago, the surname Andersson logically enough meant “the son of Anders” in my native frozen northern country of Sweden. Albeit not necessarily the case any longer – and to be quite honest it very rarely is – if your family name is indeed Andersson, at least you probably come from, or have your roots in, Sweden. (In fact, Andersson is currently the most common family name in Sweden – it usually varies between that and Johansson as the alternative top competitor.) If your name is Li or Wang, you probably come from China and if you are a Smith, you are probably British or North American. Even your first name can reveal something about you – if you are a Gandalf, Frodo or a Leia (yes, they do exist as names even outside the book/movie screen characters), your parents (or you – if renamed) probably have seen too many movies. Finally, if I am allowed to express some prejudiced ideas only for the sake of this tale, if you answer to the name Moon Unit, Dweezil, Ahmet or Diva, your folks are probably deeply involved in spiritualism or New Age culture (or your father was in fact the late, great Frank Zappa). Anyhow, along those lines, you can deduce the meaning of the scientific names of organisms, usually though with much higher precision. Depending on the … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

All change at Selsey, West Sussex, UK

David Bone (UK) Issue 26 of Deposits magazine in the Spring of 2011 included my article on fossil collecting at Bracklesham Bay in West Sussex, following in the footsteps of my guide book on Fossil hunting at Bracklesham & Selsey, published in 2009. This area has been well known for the foreshore exposures of Palaeogene and Quaternary geology since the mid-nineteenth century and is still very much an area for popular fossil collecting, as well as research. Many readers will have been to Bracklesham or Selsey to collect sharks’ teeth and may have even been lucky enough to find a piece of mammoth bone or tooth. The scientific value of the area is recognised by much of the coastline being designated as a geological Site of Special Scientific Interest (or SSSI). However, this has been impacted by two major coastal defence schemes at Selsey that were completed in 2013, significantly changing access to the foreshore and any exposures of the geology, as well as rendering my guide book in need of a major update. In medieval times, Selsey was effectively an island, although this is no longer the case due to the construction of sea defences and land reclamation. However, Selsey remains a localised area of higher land surrounded by low-lying land prone to flooding (Fig. 1). It has also been an area of coastal erosion and loss of land to the sea throughout recorded history. The relatively unconsolidated Palaeogene and Quaternary sediments exposed in the low cliffs of the … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.