This category can only be viewed by members. To view this category, sign up by purchasing Annual subscription, 12 Month Subscription or Monthly subscription.

Mammoths and the Mammoth Ivory Trade

Dick Mol and Bernard Buigues (The Netherlands) The ivory industry is flourishing using mammoth tusks and, illegally, the tusks of modern elephants. The growing hunt for mammoth tusks hampers palaeontological research and, as the two ivories are hard to distinguish, enforcement of endangered species legislation is impeded. Changes in legislation may not be practicable. However, education of the mammoth hunters may result in a win-win situation. This has now begun and the resulting co-operation has already lead to, and may lead to, more important discoveries and the securing of the remains for scientific exploration. Introduction The use of mammoth ivory for the construction of tools and artefacts is already known from Palaeolithic time. Our ancestors have used it for weapons and ornaments. The quality of the ivory of woolly mammoths, Mammuthus primigenius, found in the permafrost of Siberia as well as in North America (Alaska, USA and Yukon, Canada), is of outstanding quality and easily processed by the ivory industry. The quantity of traded ivory is substantial and the first overview of those traded amounts has been archived by Tolmachoff (1929). After this inventory, the trade has continued at an accelerated pace, especially during the last decade. Apart from the commercial value for the ivory industry, individual collectors and natural history museums often want to possess complete tusks. These intense collecting activities destroy enormous amounts of palaeontological data and obstruct the investigation of Pleistocene mammals and their habitats. It was our objective to start a discussion on how to counteract … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Seeing dramatic folded strata from the car: Sideling Hill, Maryland, USA

Deborah Painter (USA) In many states of the United States and in many locales in the United Kingdom, there are historic markers at the site of an important historic home or event. However, I wonder if every accessible rock formation had its own historic marker, would more people take the time to learn about it? The entire history of the planet is seen in rock formations. Just west of the town of Hancock, in the state of Maryland, USA at Mile Marker 74 on Interstate 68 (coordinates 39° 43’ 11.54” N, 78° 16’ 58.29” W) is the Sideling Hill road cut, a textbook example of tight folds in a mountain (Fig. 1). Until relatively recently, the visitors centre located adjacent to the cut was a perfectly complete historic marker. It gave travellers not only a place to stop to buy refreshments and relax at a picnic table surrounded by shade trees. It also provided an opportunity to read about the history of a spectacular cut in a mountain resulting from a need for safer transportation through a difficult and rugged stretch of road. Fig. 1. View west along Interstate 68 and US Route 40 (National Freeway) from the Victor Cushwa Memorial Bridge as it passes through the Sideling Hill Road Cut in Forest Park, Washington County, Maryland. (Credits: Famartin, Wikimedia Commons.) The centre still helps motorists see a geological formation safely from a walkway and an enclosed bridge. Sideling Hill’s transportation story goes back to the earlier days of road … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Geology museums of Britain: The National Stone Centre, Derbyshire

Jon Trevelyan Britain has a long and proud history of geological museums (and museums that have significant geological collections) dating back at least to early Victorian times. One need only think of William Smith’s revolutionary and magnificent, 1829 Rotunda in Scarborough to understand this (Fig. 1). Fig. 1. The Rotunda, Scarborough. Here, Smith’s fossils were (and are once again, after significant renovation to the building) arranged up a spiral staircase in the order they occur in the rock column – an extremely modern way of doing things. And, of course there is Richard Owen’s Victorian masterpiece, the Natural History Museum in London with, among many other things, its dinosaurs and exhibits of other fossils (Fig. 2). Fig. 2. The Natural History Museum, London. However, the venerable NHM raises an important question. To create a display for the public, to what extent should museums use push-button technology and pretty pictures, rather than displays of the actual subject matter? In recent years, it seems that museums increasingly want to cater merely for children (and certainly not adults), who (apparently) can only be engaged by technology rather than, for example, a well-labelled and beautifully prepared fossil ammonite. The belief seems to be that they simply cannot look at exhibits in the way that Victorians did – with specimens set out in cabinets – but rather, need to be engaged by electronics and graphics that are one remove from the subject matter itself. I suspect that it was this belief that lead the NHM … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Urban geology: An inselberg in Rotterdam

Stephen K Donovan (The Netherlands) The Low Netherlands, much of which is below sea level, is a broad area of the country that (very approximately) parallels the coast and is kept ‘dry’ by major works of civil engineering (IDG, 1985, pp. 6-7). Geologically, it is a flat expanse of Holocene deposits; most of the author’s experience is in the coastal plain (de Gans, 2007), where I both live and work. There is no significantly older geological deposit or feature anywhere in this region – no coastal cliffs, mountains or quarries to tempt the attention of the wandering Earth scientist. So, it is commonly the ex situ that demands the geologist’s attention rather than the in situ. For example, I have commented previously on such diverse topics as the use of imported limestone to make a false natural bridge (Donovan, 2014), various aspects of building stones (for example, Donovan, 2015, 2019) and gabions mimicking sedimentary bedding, at least from a distance (Donovan, 2018). Of these examples, the natural bridge is the most exotic; although such a bridge might be expected in karstified limestone landscapes almost anywhere, my own experiences of them are limited to the Antilles (Miller and Donovan, 1999; Donovan et al., 2014). In this article, I describe a further man-made structure mimicking an even more exotic geomorphological phenomenon, most closely associated in the minds of Earth scientists with Africa. It is a structure that I have, until now, only known from textbooks – I refer to a mock inselberg … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Sheppeyfossils.com: The genesis of a website

Fred Clouter (UK) The Isle of Sheppey is situated at the mouth of the Thames estuary and is a part of the North Kent marshes. The north coast of the island has about 5km of London Clay exposures that are highly fossiliferous. The London Clay here was laid down between 54 and 48mya, during the Eocene epoch, on the shallow shelf of a semi-tropical sea near the estuary of a major river system. I cannot remember just when it was that I decided to embark on the project of building a website about fossils and fossil collecting in the Isle of Sheppey. However, I do know that a combination of factors led to it. The first was my rapidly growing collection of fossils from this area. The second was the book London Clay Fossils of the Isle of Sheppey that the then Medway Lapidary and Mineral Society had decided would make a good Millennium project. Information covering the fantastic fossils found there was not readily available. The only information often could only be found in old and difficultto- obtain monographs written in the Nineteenth Century or books written in French relating to fish fossils found in Britain or in Belgium and Holland where there are deposits of a similar age. As this book was a collective undertaking, my role was to take the pictures. This meant that I would have access to fossils from many private collections as well as some held in various museums. Lastly and most importantly, was … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

India’s ‘Dinosaur Fossil Park’ – Raiyoli

Khursheed Dinshaw (India) Raiyoli is a village near Balasinor in the state of Gujarat, India, which has been attracting palaeontologists because of its dinosaur fossil park (Fig. 1). Curious to know more about the park, I visited Balasinor to meet Princess Aaliya Sultana Babi (Fig. 2), who is also known as the ‘Dinosaur Princess’. I had booked my stay at The Garden Palace, which is the private residence of the royal family of Balasinor. The property also offers guests’ accommodation and signature experiences. While relishing a sumptuous dinner and chatting with the warm and hospitable princess, I learnt about how she got involved with the site: “In the year 1997, Raiyoli was visited by leading palaeontologists from the Indian states of Uttar Pradesh and Rajasthan for excavation purposes. They came to our residence for tea and, during the conversation about the site, I realised that it was time to act on my calling. I say “act” because my mother, Begum Farhad Sultana, used to tell me that, as a child when I was learning the alphabet, when it came to the letter ‘D’, it was not D for ‘dog’. Instead I learnt D for ‘dinosaur’. Spellings like Brontosaurus fascinated me even then,” she mentioned nostalgically. Fig 1. The Dinosaur Fossil Park at Raiyoli. The timing to get involved with dino-tourism was right, as foreigners began to express an interest in visiting the site. So, who better than Aaliya to guide and show them around the site? Her passion and dedication … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Geology museums of Britain: The Museum of London

Jon Trevelyan (UK) In Issue 60 of Deposits, I restarted my occasional series on UK geological museum with a visit to the Booth Museum in Brighton (see Geology museums of Britain: The Booth Museum of Natural History, Brighton). Having more time on my hands than I would like during the Covid-19 lockdown, I got to thinking about a recent visit I made to the Museum of London in the Barbican in the City of London. I expect that most people would not link this excellent museum to anything geological, but they would be wrong. In fact, there are many exhibits from the prehistory of the capital and these include fossils of animals that lived in the region and stone tools from our ancient ancestors, who shared the area (Figs. 1 and 2). Fig. 1. A somewhat demonic looking auroch (Bos primigenius), which is an extinct species of large, wild cattle. These were domestic during the Neolithic Revolution, such that modern breeds share characteristics of the aurochs. Fig. 2. Flint tools found at Swanscombe. In fact, the museum’s oldest items date back to when London was tundra and the local population would fit into one of its iconic double-decker buses. During these times, there were several different species of humans occupying the Thames Valley, firstly as hunter gatherers and only later creating fixed settlements. Human and animal species roamed the open steppe-tundra, until their final disappearance about 30,000 years ago; and Neanderthal groups probably shared the valley with modern humans. And … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

From the wet clays of Peterborough to the sunny Caatinga of Brazil

David M Martill (UK) After several gruelling years of working in the sticky wet Jurassic clay pits of the Peterborough district for their gigantic marine reptiles and even more massive fishes, it was a refreshing change to fly south and investigate the sun-baked Caatinga of South America. The Chapada do Araripe, on the borders of the Brazilian states of Ceará, Pernambuco and Piaui, had always fascinated me (Fig. 1). Fig. 1a (left). A map showing the location of the Chapada do Araripe in the northeast of Brazil. Fig. 1b (above). Detail of the Chapada do Araripe. This is one of the most important sites in the world for Cretaceous Gondwanan fossil fauna and flora. I had seen specimens of the fabulous fossil fishes (I hope you like the alliteration) in limestone concretions (Fig. 2) that kept turning up in European fossil shops, but what had really caught my eye was a short letter to the scientific journal Nature that described fossil ostracods from those very same concretion horizons. Fig. 2. A typical concretion from the Santana Formation, with a not so typical fish. This is one of the rare fossil rays. I am not an aficionado of ostracods: who is? They mostly look like small baked beans, and it is so tedious trying to mount them on stubs so that you can see them under the electron microscope. No, it was the remarkable quality of their preservation that caught my eye. The specimens in question were described by Ray Bate, … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

The “thick-shelled mussel” Pycnodonte (Phygraea) vesiculare: Germany’s “Fossil of the Year” 2017

Jens Lehmann (Germany) Thick-shelled oysters of the species Pycnodonte (Phygraea) vesiculare (Lamarck, 1806) are among the most common fossils of the late Cretaceous period of Europe. They are also known as “thick-shelled mussels” in the popular wisdom and the reason for this name is obvious when you have a look at a typical example (Fig. 1). Fig. 1. A large specimen of Pycnodonte (Phygraea) vesiculare, as typically occurring in the latest Cretaceous of Europe. From the Campanian of Haldem near Lemförde in Germany. This is an historically important specimen, because it belongs to the reference material of Arnold (1968) from this famous locality, which has produced many type specimens of fossils. GSUB L559. They can be seen in many museums, but, even more often, they are encountered during walks along the beaches under the chalk cliffs of England or around the Baltic Sea in continental Europe. A famous locality is the island of Rügen in Germany, where tourists can easily spot them (Fig. 2). Fig. 2. Collecting Pycnodonte from Late Cretaceous (early Maastrichtian) chalks is popular among tourists on the Isle of Rügen (Promoisel pit near Saßnitz) in northeastern Germany. (Photo by Martin Krogmann, 2014.) Therefore, it is not surprising that this extinct oyster species was selected as “Fossil of the Year” 2017 by the German Palaeontological Society (Paläontologische Gesellschaft) due to its ease of recognition (Kutscher 2017). Further reasons for the vote include its scientific and scientific-historical significance. This is the second time the society voted for a fossil … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Cameos from Ancient Greece and Rome: Small but precious treasures

Dr Robert Sturm (Austria) When talking about precious or semi-precious gemstones, most people think of the diamonds they cannot afford or rubies, agates and similar well-known minerals. But, only a few people know that gemstones have been subjected to various carving techniques since ancient times, making from them small but marvellous works of art. Basically, the most commonly applied technique of gem carving is the so-called cameo, which, in most cases, features a raised relief and, therefore, differs from the so-called intaglio that has an engraved or negative image. Ancient cameos date back as far as the third century BC and were first produced in Greece, where they mainly served as jewellery for the Hellenistic kings and their retinues. In ancient Rome, cameos and similar works of art were highly popular, especially in the family circle of the Emperor Augustus (27 BC to 14 AD), who developed a great affection for this kind of art. Roman cameos generally continued Hellenistic styles and were marked by only very few innovations. The extremely high quality of gem carving (which will be discussed more in detail below) was maintained until the end of the second century AD, but, with the beginning of the third century AD, it was subject to a sharp decline that can also be seen in other fields of art. During the European Middle Ages, cameos were highly appreciated by the aristocracy, but, nevertheless, the production practices developed in the ancient world found their application only in very rare cases, … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Siwalik Fossil Park, Himachal Pradesh State, India: Part 2

Khursheed Dinshaw (India) In the first part of this article (see Siwalik Fossil Park, Himachal Pradesh State, India: Part 2), I introduced Siwalik Fossil Park, its geology and some of the animals and plants whose fossilised remains have been found there. In this second and last part, I cover some more of the mega fauna that once lived here. In fact, the Siwalik Fossil Park, in the state of Himachal Pradesh, India is a significant step towards the preservation of prehistoric animal sites, conserving and repairing the current natural environment and utilising them for scientific and educational purposes. In fact, the park is a rich geological heritage. The environment and climate was highly favourable for the development of elephants in the Siwalik region between 20 and 1.5mya (Figs. 1 and 2). Approximately 22 fossil species have been found, but all became extinct one million years ago with the beginning of the Ice Age. Fig. 1. The section displaying elephant fossils. Fig. 2. The proximal end of an elephant’s femur, which became extinct 1myrs ago at the beginning of the ice age. Nowadays, only one species is found in India (the Indian elephant, Elephas maximus indicus). The fossil skulls, jaws, teeth and bones of extinct species are displayed at the museum along with a life-size fibre glass model of the extinct giant species, Stegodon ganesa (Figs. 3 and 4). Fig. 3. The cranium of Stegodon insignis, which existed during the Plio-Pleistocene period. Of the species that existed during the Plio-Pleistocene period, … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Plenty of geological fun at Cornwallis’ Cave

Deborah Painter (USA) Cornwallis’ Cave, a feature along the bluffs overlooking the York River in historic Yorktown, Virginia in the USA, is not a real cave and may not even have sheltered British General Charles Cornwallis during the final weeks of the American War of Independence. The National Park Service, which oversees the feature, has little historical evidence that Cornwallis ever used it as a meeting place or as shelter. He probably used a bunker located elsewhere along the river. It is one of the United States’ best-known man-made ‘caves’ and, though composed of Pliocene epoch coquina – a type of sandstone composed mainly of fossil shells – it is unrelated to actual karst features in the area. This feature is a cultural resource that contains holes carved in the stone cave walls for wooden beams to enable storage of supplies during the later American Civil War and is part of the Colonial National Historical Park encompassing many hectares. The cultural history Cornwallis’ Cave is approximately 12.19m in length. It has been sealed off partially by the National Park Service and one can only enter approximately a meter into the cave and view its interior through a wrought iron gate. Were it not for the historic value of the feature and its proximity to the site of testing of mid-nineteenth century hot air balloon warfare, the ‘cave’ might have been levelled long ago. Thankfully, it has not. It is rich in fictional lore, including its reputation for ghosts. A regular … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Siwalik Fossil Park, Himachal Pradesh State, India: Part 1

Khursheed Dinshaw (India) The Siwalik Fossil Park is located amidst the scenic Siwalik Hills in the district of Sirmaur in the state of Himachal Pradesh, India. On 23 March 1974, the park was established by the Geological Survey of India in collaboration with the Himachal Pradesh Government. It contains many life-size, fibreglass models. These models are outside in the park and are based on the study of the fossils that have been found here and a field museum. The models are of prehistoric animals, which thrived in the area from to 1 to 2.5mya. The museum displays Siwalik vertebrates collected from the area. A catalogue of all the fossils and specimens displayed in the museum has now been documented providing their photographs, taxonomic status and locality, along with collectors’ names and the field season during which they were collected. Fig. 1. Fossil wood found in Siwalik, where a prehistoric animal site is being preserved. The Siwalik rocks are famous the world over for the remains of various vertebrate animals and plants. There are varied geological formations of the park, like the Jarasi, Spiti and Giumal Formations. The Jarasi consists of red purple shale with gypsum bands and are Neo-proterozoic to Ediacaran in age. Fig. 2. This rock from the jarasi formation is neo-proterozoic to ediacaran in age. The Spiti Formation is one which has fossiliferous shale containing ammonites, belemnites, bivalves and brachiopods. Its broad age is Oxfordian to early Valanginian. The Guimal Formation has fossiliferous sandstone with shells and it … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

The Geologists’ Association: An overview

Diana Clements (UK) The Geologists’ Association (GA) was formed in 1858 and, from its inception, was an inclusive organisation set up to embrace both professional and amateur geologists, unlike the Geological Society, some 50 years older, which was only intended for professionals. Women were accepted from the beginning – similar organisations of the time were habitually men only. It was intended as a meeting-place for like-minded people and fieldtrips were always an important part of the Associations’ activities. As early as 1895, Local Groups around the country were set up to extend activities nationwide; now we have 17 Local Groups with a further 72 other geologically-related societies that are affiliated with the GA. The aims that we adhere to now were developed gradually and foremost among them is to make geology available to a wider public. The Proceedings of the Geologists’ Association first appeared in 1859, only a year after its formation, and included written papers presented first to members at the Friday lectures and the write-ups from the early fieldtrips. These are often important historical documents of geology in a bygone age, no longer visible, particularly in urban environments. Fig. 1(a) A fieldtrip to Gilbert’s Pit, Charlton in 1913, when the quarry was operating. Fig. 1(b) The same face in 2016, with steps erected to view the remaining exposure of geological interest. As well as the images in the write-ups, the GA possesses a large archive of photographs and associated ephemera documenting the activities of the Association since the … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Timeless trees at Florissant, Colorado

Steven Wade Veatch (USA) The huge petrified redwood stumps near Florissant stretch the limits of my understanding. I’m left with only wonder, like a poem I can’t explain. Under the dominion of a clear blue sky, the afternoon light ricochets off the stone, displaying the myriad beige and brown hues of the fossil stumps. Their stony surfaces contrast with tufts of grass that surround them. The nearby orange-red bark of ponderosa pine and the scent of the forest adds another layer of magic, while silent mats of pine green moss cluster in the shadows. Pale lichens cover some of the stone tree rings. The warm summer air buzzes with insects. Fig. 1. View of the Florissant Fossil Beds National Monument’s iconic “Big Stump”. (Photo by S W Veatch.) For me, the stone trees are a portal where the past joins with the present, and time seems to have stopped. I imagine how it all began 34 million years ago when a cluster of nearby volcanoes, once dormant, erupted. It started with a blast of ash and fiery molten rock shooting out from awakened vents. The air became heavy and dark, as plumes of grey ash hazed eastward towards what would become Florissant. Rainfall mixed with loose sediments on volcanic slopes, forming mud – the colour of morning coffee – that rushed down the slopes of the volcanoes at speeds of up to 145km an hour. Ash rained out of the sky and mixed with the spreading mud. The mud popped … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

The Bhimbetka rock shelters and paintings of India

Khursheed Dinshaw (India) The naturally formed rock shelters and caves of Bhimbetka in the state of Madhya Pradesh in India (Fig. 1) have a number of interesting paintings, which depict the lives of the people who lived here (Fig. 2). These rock shelters exhibit the earliest traces of human life in India. The Stone Age rock paintings can be seen on the walls, ceilings and hollows, and were created during a period when microliths were evolved. The paintings date back to the Mesolithic period. Fig. 1. The first rock shelter that greets you at Bhimbetka. Fig. 2. Rock art showing daily life at Bhimbetka. Due to their integrated nature, the Bhimbetka rock shelters were included in UNESCO’s World Heritage List in 2003. From the UNESCO website, it is clear that two of the criterion for the selection were: Bhimbetka reflects a long interaction between the people and the landscape, as demonstrated in the quantity and quality of its rock art.The area is closely associated with a hunting and gathering economy as can be seen in the pictures below, as shown in the rock art and in the relics of this tradition in the local Adivasi village on the periphery of this site (The name ‘Adivasi’ is an umbrella term for a heterogeneous group of ethnic and tribal groups, which are thought to be the aboriginal population of India.)The excavations carried out have yielded evidence of continuous human occupation from the Lower Palaeolithic until Medieval times. During this long span of … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Brighter future for an old natural wonder

Deborah Painter (USA) During the 1700s, when North American colonies were under British rule, a certain highly intelligent and educated man by the name of Thomas Jefferson heard of a remarkable natural arch in west central Virginia, to the southwest of his home in Charlottesville. He purchased hectares of land surrounding the stone arch from King George III for 20 shillings. Since he bought this land in the year 1774, it was a well-timed transaction. The King might not have dealt so amenably with Jefferson following his involvement in writing the Declaration of Independence. The future third President of the United States was immensely interested in both architecture and natural history, and showed his understanding of both in his description: “… the arch approaches the semi-elliptical form, but the larger axis of the ellipsis, which would be the cord of the arch, is many times longer than the transverse”. Cedar Creek runs beneath the Natural Bridge of Virginia, which, in the 1800s, was named one of the seven Natural Wonders of the World. The creek flows through a gorge. Native Americans of the Monacan tribe had for many thousands of years camped beneath Virginia’s Natural Bridge during hunting expeditions and made use of Cedar Creek’s water. They also found the bridge itself useful as a crossing. When the Commonwealth of Virginia divided its western frontier into counties, it named the county containing the natural wonder ‘Rockbridge County’. Early explorers of the 1700s were awestruck by how this towering dolostone and … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Geology museums of Britain: The Booth Museum of Natural History, Brighton

Jon Trevelyan (UK) Fig. 1. A group of German schoolchildren enjoy a day out at the museum. Those of you with a long memory (and an admirable loyalty to Deposits magazine) may remember that, several years ago, I produced a few articles on British geology museums, including the National Stone Centre in Derbyshire and Whitby Museum (the latter jointly with Dean Lomax). I have recently been spending some time working in the seaside town of Brighton and decided to reacquaint myself with the Booth Museum of Natural History, an to write about this quaint little gem. Fig. 2. The rows of cabinets containing the Victorian taxidermy of collector, Edward Booth. I am not entirely comfortable with the rows of cabinets full of stuffed animals containing the collection of Victorian taxidermy of collector, Edward Booth (Fig. 2) after whom the museum is named, but it is not that that attracts me to the museum. Rather, it is a smallish backroom housing a collection of geology – found predominantly in Sussex, but also elsewhere in Britain and the world. Fig. 3. A large set of gypsum crystals among other mineral exhibits at the museum. While there are iguanodontid dinosaur bones from Sussex on show, there are also large mineralogical and sedimentological specimens (and apparently petrological slides in a microscopy section, which I was not aware existed). There is also material from the elephant beds beneath Brighton, with ice age mammal fossils and subfossils. Fig. 4. Echinoids: Stereocidaris sceptrifera (left), Tylocidaris clavigera (middle) … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Excursion to the South Devon coast led by Prof John CW Cope (National Museum Wales)

Mervyn Jones (UK) GA field meeting on 6 and 7 April 2019 This field meeting was the second following the publication of Prof Cope’s GA Guide No 73, Geology of the South Devon Coast (reviewed in Issue 51 of Deposits), the companion to GA Guide No 22, Geology of the Dorset Coast (reviewed in Issue 50). Our mission for the weekend was to complete our examination of the complex Devonian succession from Torbay to the western limit of Lyme Bay at Start Point and then beyond; farther into South Devon. Of great interest was the marine Devonian, first described by Adam Sedgwick, assisted by Roderick Impey Murchison, who finally realised that these facies were contemporaneous with the familiar Old Red Sandstone found north of the Bristol Channel. The area has much to offer enthusiasts of structural geology because the Devonian strata have been tectonised by the closure of the Rheic Ocean during the Variscan orogeny. The story has only been unravelled in the last 50 years as follows. First, sediments filled a series of basins caused by crustal extension; the basement beneath the Devonian rocks may well be a massif of Precambrian mica-schist, inferred from the copious amounts of mica and the occasional xenolith in the rocks above. Then, from the Early Carboniferous, continental collision caused a series of major thrust structures and metamorphic zones that progressively moved northward. As a consequence, any Carboniferous rocks that were deposited in the Torbay area were rapidly stripped off. The marine Devonian was … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Encrinus liliiformis – a crinoid from the Triassic that made a career for itself: Germany’s fossil of the year, 2019

Jens Lehmann (Germany) Despite their common name ‘sea lilies’, crinoids are animals but not plants, although they look like a flower (Fig. 1). They are related to the sea urchins, sea cucumbers and starfish, groups that are unified as echinoderms (see, for example, Broadhead and Waters, 1980). Crinoids consist of a “root”, a stem built of many disc-shaped elements (columnals) and a crown. Fig. 1. A crown of the famous crinoid, Encrinus liliiformis, from a Muschelkalk quarry in Northern Germany. The fossil shows a slightly opened crown, with a number of arms besides each other. The name “sea lily rock” is often associated with the basal plates of fossilised crowns that resemble a lily flower and were collected as “Lilienstein” (“lily rock”) by gentlemen collectors in Central Europe, particularly in the nineteenth century (Fig. 2). In fact, crinoids were encountered for many hundred years and thus were already known by the famous Swiss and German scientists (respectively), Conrad Gessner and Georgius Agricola, in the sixteenth century. However, these early geoscientists only found the fossils, since living crinoids can only be found in the deep sea and were not known by the scientific community before the eighteenth century. This is the reason why the isolated stem elements called columnals occur in millions of specimens in the German Muschelkalk (Middle Triassic) were mystically called “Boniface pennies” or “Witch money”, before they were recognised as parts of crinoids. Fig. 2: Even details of Germany’s “Fossil of the Year 2019” are beautiful, like these … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Important Green River Formation fossils come to New York

Stuart Wilensky and Douglas Miller (USA) In the early Eocene Epoch, drainage from the newly uplifted Rocky Mountains filled an inter-mountain basin to form what geologists call Fossil Lake. The climate of Fossil Lake was subtropical, similar to the climate of Florida today. The lake persisted for about two million years, and was home to palm trees, turtles, birds and an abundance of fish. On numerous occasions, unique conditions came together to result in some of the best-preserved fossils ever discovered. The sediments of Fossil Lake were first discovered in the 1860s, near the town of Green River Wyoming, and the area was named the “Green River Formation,” which is well-known in the scientific community and by amateur collectors. Palaeontologists have long theorised that the lake was deep enough to be anoxic (devoid of oxygen) at the bottom. This prevented scavengers from disturbing the plants and animals, and inhibited decomposition. Algae, and other plant and animal life, would die and fall to the bottom as in lakes and ponds today. Storms brought runoff from the mountains, covering the flora and fauna with mineral-rich material that would ensure their preservation. Recently, scientists have asserted that a kind of “red tide” may have been responsible for the many perfectly preserved fossils found. (“Red tide” is a common name for algal blooms, which are large concentrations of aquatic microorganisms, such as protozoans and unicellular algae. These can cause a severe decrease oxygen levels in the water column, leading to mass mortality events.) We … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Clarkia Flora: 16-million-year-old plants offer a window into the past

Margret Steinthorsdottir and Helen K Coxall (Sweden) Near the small town of Clarkia in Shoshone County, Idaho in the USA, exists a rich and unique fossil deposit. The Clarkia fossils, or Clarkia Flora, as the deposit is mostly called due to the abundance of fossil plants, is so well preserved that the assemblage is referred to as a “lagerstätte”, a scientific term reserved for the world’s very finest fossil deposits. The Clarkia fossils are found in sediments that are now known to be about 16 million years old and belong to a period in Earth history called the Miocene. By this time, the (non-avian) dinosaurs were long extinct (the last of these dinosaurs disappeared about 66 million years ago), the Earth’s continents were more or less in the same position as today, and many of the animals and plants would have started looking familiar to modern humans (who emerged much later, about 200,000 years ago). Fig. 1. The entrance to the “Fossil Bowl” motocross racetrack and fossil locality near Clarkia, Idaho. Among the Clarkia fossils can be found various insects, fish and occasionally the remains of small mammals. However, most striking is the wealth of plant fossils in the form of exceptionally well-preserved leaves, nuts, seeds and wood. Impressively, one can find leaves of oak, laurel, pine and birch that look virtually identical to those we find today. If you look quickly when a new fossil is newly exposed from within the host sediments, you may occasionally even see the … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Stop the press: The Jurassic Coast starts in the Permian

Mervyn Jones (UK) This Geologists’ Association field meeting followed the publication of Professor John Cope’s Geologists’ Association (GA) Guide No 73, Geology of the South Devon Coast. It is also the companion to GA Guide No 22, Geology of the Dorset Coast. John retired in 2003 after lecturing at Swansea and Cardiff universities. Since then, he has been an Honorary Research Fellow at the National Museum Wales in Cardiff, and has a wide field experience in the UK and Europe, with publications covering many fossil groups over a wide stratigraphical range. Most recently he has been working on redrawing the geological map of South Wales, the subject of an upcoming GA lecture. And, each year, for the past six years, he has provided weekend geological trips to the West Country. Fig. 1. Prof Cope demonstrates bedding and cleavage. We met up at Meadfoot Strand to the east of Torquay Harbour. Our mission for the weekend was to examine the complex Devonian succession in the Torbay area and its unconformable relationship to the Permo-Triassic cover. Of great interest was the marine Devonian, first described by Adam Sedgwick, assisted by Roderick Impey Murchison, who finally realised that these facies were contemporaneous with the familiar Old Red Sandstone found north of the Bristol Channel. Since then, the Devonian Stages have been named after rocks in the Czech Republic, Germany and Belgium. The base of the Devonian was the first ‘Global Boundary Stratotype Section and Point’ (GSSP), defined by graptolite zones at Klonk, in … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Geological transformation of Sharjah, United Arab Emirates

Khursheed Dinshaw (India) In this article, I will briefly deal with the fascinating and relatively recent geological transformation of the Sharjah region of the United Arab Emirates (UAE). Sharjah needs no introduction in terms of it being a popular tourist destination, especially for families. However, very few know how it was formed and subsequently transformed. In this article, I hope to explain this fascinating aspect of Sharjah. From the beginning At the beginning of the Miocene Period, 23 Ma, Arabia finally split from Africa along the Red Sea and the Gulf of Aden became a separate plate. This new plate moved in a northerly direction and collided with, and was subducted under, the Eurasian continent (Fig. 1). The Strait of Hormuz also closed as the remains of the Tethys Ocean formed a rapidly subsiding basin in which thick layers of salt were deposited. Large scale folding and faulting took place in the UAE producing hills of folded rock, such as Jebel Fai’yah and Jebel Hafit. Fig. 1. Granite from continental drift. In the eastern part of the UAE, uplift of the Al-Hazar Mountains began. This continued into the Pliocene Period, from 5 to 2 Ma. In the late Miocene and Pliocene, the Sharjah region finally rose above sea level and the landscape we see today was formed. Fig. 2. Various rock exhibits at the Sharjah Natural History and Botanical Museum. When the region known as Sharjah rose above sea level, it allowed the area to be covered by the moving … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Dendermonde Mammoth: Fighting pyrite decay and the preservation of unique palaeontological heritage

Anthonie Hellemond (Belgium) Collecting fossil vertebrates is rather popular among amateur palaeontologists. However, little interest is shown in the different stages one should undertake to treat and safely guard these specimens for the future. Loads of fossils from historical collections are currently suffering because of years of storing and neglect. This might seem strange, since the fossils themselves have spent most of their time underground in very humid conditions, but in reality, problems only start right after digging them up. Following-up on the restoration project of the “Dendermonde Mammoth”, we want to give an insight into the problems one can encounter when dealing with the restoration and preservation of Pleistocene vertebrate remains that have remained untreated for the past 20 years. The discovery In the historical Belgian city centre of Dendermonde (French: Termonde), we find the city’s history (including natural history) museum called the “Vleeshuis” museum (the house of meat merchants). It is located in one of the most authentic sandstone buildings in the main market square of “Dendermonde” (a province of East-Flanders). Inside the majestic wooden attic of the museum, the city’s oldest resident watches over the collection, which is packed with fossils and artefacts from the last ice age and prehistory. When walking up the impressive stone stairs that lead to the attic, visitors will encounter the paleontological pride of the “Dender” valley (the river flowing through Dendermonde). When we take a closer look at the information signs, we learn that this mammoth was found between 1968 and … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Roman quarries in Austria and Germany: A short sight-seeing tour

Dr Robert Sturm (Austria) This is the third of four articles on the quarries of the ancient world and later, and, in particular, the marble that was quarried there and the works of art made from it. The first is Mining in Ancient Greece and Rome and the second is Marble from the Isle of Paros – a tour of the ancient quarries. The ancient methods used An antique quarry is interesting because it is a place where raw material for buildings and sculptural works was extracted to specific sizes and shapes with the technical methods of that time. The mining techniques did not change very much from the earliest phases of human civilization until the end of antiquity, even though the methods used continuously improved over time. In ancient Greece, single blocks of the stone were separated by smashing several key holes into the rock wall, into which wooden wedges were driven. After that, the wedges were moistened, causing their expansion and the cracking of the block along the line of holes. For a better control of the rock fracture, long groves were carved into the blocks with iron tools, into which key holes were subsequently inserted. Alternatively, the blocks were completely split off from the rock walls by deep cuts in the rock and then separated from the ground using crowbars (Fig. 1). Fig. 1. Separation of single blocks of rock using a crowbar and leverage. Since archaic times, rock saws have also been used. In the Roman … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Marble from the Isle of Paros in Ancient Greece: A tour of the ancient quarries

Dr Robert Sturm (Austria) This is the second of four articles on the quarries of the ancient world and later, and, in particular, the marble that was quarried there and the artwork that was made from it. The first was Mining in Ancient Greece and Rome. Some introductory words In general, marble represents a coarse-grained metamorphic rock primarily consisting of the minerals calcite (CaCO3) and dolomite ((Ca,Mg) (CO3)2). The word ‘marble’ may be derived from the Greek term ‘marmaros’ (μάρμαρος), which means ‘shiny stone’. The earliest use of the rock dates back to the fourth millenium BC, when it was considered, for the first time, as appropriate material for the construction of buildings and the production of rather primitive sculptures. In the Classical era starting at the beginning of the fifth century BC, its use was subject to a remarkable increase, which, among other things, entailed the prevailance of this shiny material in ancient Greek architecture and sculptural art. At that time, marble was simply termed ‘white stone’ or ‘Pentelic, Hymettus or Parian stone’, thereby indicating its preferential origin from the quarries of Naxos, Paros and Mount Pentelicus. Although these mines attained extraordinary eminence in antiquity, marble was also exploited from the quarries of Eleusis, Tripoli, Argos, Selinus, Syracuse, Skyros and other places. Marble from Paros – a very particular stone Each marble originating from a local quarry is characterised by very specific features. Stone material from Mount Pentelicus is distinguished by its white colour and fine-grained texture, rather high … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Wieliczka Salt Mine of Poland (Part 2)

Khursheed Dinshaw (India) This the second of two articles on the Wieliczka Salt Mine in Poland. The first (Wieliczka Salt Mine of Poland (Part 1)) covered some of the highlights that can be seen there. This one covers some more of these features, but also deals with the geology of the site. The journey began in the Miocene period, which was about 13.5Ma, when the crystallisation of salt dissolved in sea water occurred. These salt deposits combined with rocks that normally accompany salt that occupied what was known as the Pre-Carpathian Sink. Subjected intensively to the tectonic process, these salt deposits shifted and folded. About 6,000 years ago, the local people of Wieliczka in Poland started to produce salt by evaporating salty water. In the thirteenth century, when the sources of the salty water were almost exhausted, they began to sink wells hoping to find salty water under the ground. In 1289, at the bottom of one of the wells, the first lump of the grey rock salt was found and that was the beginning of the Wieliczka Salt Mine. Today, the mine is divided into two portions. While its upper stratum is the block type, its lower stratum is of the stratified type; and visitors learn about salt, its excavation and types as they walk with their designated guides across chambers, pathways, tunnels, chapels and lakes. In the olden days, the equipment to transport salt from one level to another included wooden carts and trolleys. At Wieliczka, these are … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Wieliczka Salt Mine of Poland (Part 1)

Khursheed Dinshaw (India) The Wieliczka Salt Mine of Poland was included in the first UNESCO World Heritage list in 1978. It is also on the Polish List of Historic Heritage and, when visiting, provides an interesting way to get to know how salt has been mined underground for almost nine centuries. In the summer, almost 8,000 tourists a day visit Wieliczka, which has 500 tour guides and 400 miners maintaining the mine. After buying your ticket, you are allotted a guide who will take you around the mine. Patrycya, our guide, has been on the job for 20 years and we enthusiastically followed her to explore the beauty, material culture and historic heritage of the mine and its excavated complex. Fig. 1. Kinga – the patroness of the miners, along with other salt sculptures. We opted for the tourist route, which lets you explore chambers, galleries, chapels and lakes. The mine has been opened to the public with this route since the end of the eighteenth century and has more than 300km of galleries and almost 3,000 chambers. It is divided into nine floors at depths varying from 64m to 327m. We went down to the third floor, which is at a depth of 135m. To get to the first level, one has to walk down 380 wooden steps, but the walk is comparatively easy. There are a total of 800 steps that tourists walk in the mine and, after the tour ends, a lift takes you to the exit … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Jurassic Coast (or is it?) with the Geologists’ Association

Mervyn Jones (UK) Since 2012, the Geologists’ Association (GA) has put on annual field trips to the Dorset coast led by Prof John CW Cope (of the National Museum Wales), who is author of the definitive Field Guide No 22. The second edition was published in April 2016 (Geology of the Dorset Coast (2nd ed)). In fact, the trips were started to celebrate the publication of the first edition of the guide. The Dorset Coast is often equated with the ‘Jurassic Coast’ when, in fact, the geology stretches from the topmost Triassic, near the Devon border, through Jurassic and Cretaceous successions, to Eocene deposits at Studland. For this and other reasons, it attracts amateur geologists in large numbers. John’s guide provides essential information including descriptions of the succession and practical guidance about access. What’s missing are the entertaining stories that John Cope can provide and the context provided by exploring inland a bit. Day 1 – Saturday (1 October) For our fifth field meeting, we met up in Lyme Regis (in the car park next to the newly-restored house originally owned by John Fowles – see below) – a town to stir the heart of any geologist. Our mission for the weekend was to look at the unconformity below the Cretaceous, as it oversteps the older Jurassic and Triassic strata progressively in a westerly direction. En route, we observed the instability of the cliffs and suffered the same ourselves, as we scrambled over the boulders and shingle. On this occasion, … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.