Gravel sheets in the suburbs of Washington, DC

Deborah Painter (USA) If you live in western Prince George’s County, Maryland in the USA, in the towns of Oxon Hill and Suitland and you want to dig to place a water line, plant a garden or excavate to construct a foundation for any building, chances are you will encounter sandy soil with hundreds of cobbles and boulders. Some boulders encountered could be in the form of large flattened slabs. You might be wondering why these are present, since these towns are in a coastal plain, far south and east of the rocky outcrops of the Piedmont area of Virginia and Maryland. For someone like me, who was born and raised in the Coastal Plain area of Virginia, these ubiquitous cobbles and boulders seemed out of character for the region. I discovered these odd boulders and cobbles when I joined a colleague from an office in a northern state to assist him in ecological studies for two small sites not too far from the United States Capital of Washington, in the District of Columbia (DC). Our goal was to help our client know if there were any threatened or endangered species, wetlands, hazardous materials or other site constraints, as this would assist the client to decide whether to purchase the properties. Our first Prince George’s County site for an ecological study was one of a few hectares in size in Suitland, a suburb of Washington, DC and approximately 8km southeast of the border of the capital city near the shore … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Colourful bluffs in Long Island recall the most recent ice age

Deborah Painter (USA) Imagine a tremendous piece of land moving equipment that scraped up the soil and some of the surface bedrock from four states within the United States’ Eastern Seaboard, carrying and dragging it all the way, before dumping it on a ridge off the shoreline. That is what essentially occurred with the final advance of the Wisconsinian ice sheet, the only one which left glacial deposits visible in New York State today. Long Island is a ridge of Cretaceous bedrock with glacial deposition. The moraines there have not been ground into sandbars and spits along the western end of the north shore as much as elsewhere, because of the sheltered nature of the Long Island Sound. Therefore, shoreline bluffs expose rocks as well as glacial loess. Fig. 1. Fishermen’s Drive takes you to the loess deposits. To park at the beach requires a permit. (Photo by JB Steadman.) If you find that your journeys take you to New York City, one of the world’s largest metropolitan areas, try to make time to visit Caumsett State Park at Long Island Sound. My own visit began when planning a visit to New York State’s Long Island to see my friend, Joyce Raber. She suggested various things that we might do: go to a Broadway play, go shopping and so forth. However, my list of things to do was typically “eco-tourist”. I wanted to visit the famed American Museum of Natural History in Manhattan, then see nearby Central Park, where the … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Geological transformation of Sharjah, United Arab Emirates

Khursheed Dinshaw (India) In this article, I will briefly deal with the fascinating and relatively recent geological transformation of the Sharjah region of the United Arab Emirates (UAE). Sharjah needs no introduction in terms of it being a popular tourist destination, especially for families. However, very few know how it was formed and subsequently transformed. In this article, I hope to explain this fascinating aspect of Sharjah. From the beginning At the beginning of the Miocene Period, 23 Ma, Arabia finally split from Africa along the Red Sea and the Gulf of Aden became a separate plate. This new plate moved in a northerly direction and collided with, and was subducted under, the Eurasian continent (Fig. 1). The Strait of Hormuz also closed as the remains of the Tethys Ocean formed a rapidly subsiding basin in which thick layers of salt were deposited. Large scale folding and faulting took place in the UAE producing hills of folded rock, such as Jebel Fai’yah and Jebel Hafit. Fig. 1. Granite from continental drift. In the eastern part of the UAE, uplift of the Al-Hazar Mountains began. This continued into the Pliocene Period, from 5 to 2 Ma. In the late Miocene and Pliocene, the Sharjah region finally rose above sea level and the landscape we see today was formed. Fig. 2. Various rock exhibits at the Sharjah Natural History and Botanical Museum. When the region known as Sharjah rose above sea level, it allowed the area to be covered by the moving … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Urban geology: Gabions in the Dutch townscape

Stephen K Donovan (The Netherlands) Gabions are tools of the engineering geologist, facing elements that are used to stabilize over-steep slopes, such as sea cliffs or railway/roadway cuttings; they also have military applications. The word is derived from the French, gabion, and Italian, gabbione, and originally referred to “A wicker basket, of cylindrical form, usually open at both ends, to be filled with earth, for use in fortification and engineering” (Little et al., 1983, p. 823). A modern gabion used in engineering geology is a cage, box or cylinder, commonly infilled by rocks or concrete, and sometimes sand or soil (https://en.wikipedia.org/wiki/Gabion). Fig. 1. A gabion wall, lacking subtlety, outside the restaurant, ‘De Blausse Engel’, at Amsterdam Zuid railway station. A: General view of castellated wall, separating restaurant patrons (chairs and tables to left) from passers-by. B: Detail of one cobble in the gabion, showing a vein (sphalerite?). Essentially, gabions provide a stable retaining wall that is semi-permanent. That is, they can be more easily removed, modified or replaced than a permanent structure made in concrete, brick or steel. Although they may be aesthetically unpleasing, gabions provide stability in situations where serious erosion problems may exist, which cannot be controlled by alternatives such as re-vegetation (Freeman and Fischenich, 2000). This is a simplification and studies such as that of Druse (2015) explain something of the complexities. So, in the low-lying Netherlands, what uses might be and are found for gabions? It is reasonable to suggest that they might be used in … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Australia’s Polar Cretaceous mammals

Dr Thomas H Rich (Australia) The Cenozoic Era is commonly referred to as the ‘Age of Mammals’. That is certainly the time in the history of life when their fossils are most abundant and diverse. However, two-thirds of mammalian history was during the Mesozoic Era – and they appeared about the same time as the dinosaurs. All continents except Antarctica have some record of the early, Mesozoic mammals. Of those that do, Australia has the most meagre record of all. Despite this, with this landmass that today has the most distinctive terrestrial mammals on the planet, their Mesozoic origins are so enigmatic that it has motivated a major effort since 1984 to search for fossils of those mammals that lived alongside the dinosaurs on this now isolated continent. Fig. 1. A map of Australia showing the location of the four sites where Cretaceous mammals have been found on the continent. During the Cretaceous, Australia was much further south than at present. Shown here are the lines of latitude at that time on the continent: 50o south, 60o south and 70o south. The famous Lightning Ridge opal field has provided some of the answers – two different early Late Cretaceous egg-laying mammals (the monotremes), as well as a third mammal that may be a monotreme, have been discovered there. One thousand, three hundred kilometres to the south-southwest along shore platforms pounded by the waves of the Southern Ocean, which expose those rocks on south coast of the continent, are three sites … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

All change at Selsey, West Sussex, UK

David Bone (UK) Issue 26 of Deposits magazine in the Spring of 2011 included my article on fossil collecting at Bracklesham Bay in West Sussex, following in the footsteps of my guide book on Fossil hunting at Bracklesham & Selsey, published in 2009. This area has been well known for the foreshore exposures of Palaeogene and Quaternary geology since the mid-nineteenth century and is still very much an area for popular fossil collecting, as well as research. Many readers will have been to Bracklesham or Selsey to collect sharks’ teeth and may have even been lucky enough to find a piece of mammoth bone or tooth. The scientific value of the area is recognised by much of the coastline being designated as a geological Site of Special Scientific Interest (or SSSI). However, this has been impacted by two major coastal defence schemes at Selsey that were completed in 2013, significantly changing access to the foreshore and any exposures of the geology, as well as rendering my guide book in need of a major update. In medieval times, Selsey was effectively an island, although this is no longer the case due to the construction of sea defences and land reclamation. However, Selsey remains a localised area of higher land surrounded by low-lying land prone to flooding (Fig. 1). It has also been an area of coastal erosion and loss of land to the sea throughout recorded history. The relatively unconsolidated Palaeogene and Quaternary sediments exposed in the low cliffs of the … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.