This category can only be viewed by members. To view this category, sign up by purchasing Annual subscription, 12 Month Subscription or Monthly subscription.

Smilodon family tree

Mike Thorn (UK) In his book, “Architects of Eternity: The New Science of Fossils”, Richard Corfield coins the term “reluctant palaeontologists”. He has in mind those chemists, biochemists and biologists who use the techniques and skills from their own disciplines to shed new light on our ideas about evolution. Ross Barnett, of the Department of Zoology at Oxford, might well be considered to be in this category. A biochemist by training, he has recently co-authored a paper on the DNA of three extinct cats which has helped to lay to rest some of the arguments about the feline family tree. Fig. 1. Smilodon skeleton. Ross came to Oxford in October 2002, to work on a PhD, after completing his biochemistry degree at Edinburgh. His supervisor, Professor Alan Cooper, was interested in cat genetics and had managed to raise funds to carry out research into the relationships of several extinct cats. In particular, there were questions about where the sabre-toothed cats, such as Smilodon and Homotherium, fitted in. Fig. 2. Ross Barnett in his office. As Ross explained: “There has been a lot of study done on these animals. For example, there is a huge collection of thousands of individuals of Smilodon from Rancho Le Brea in Los Angeles, so they’ve been really well characterised from their morphology. “What the palaeontologists had concluded from this was that there was a split at the base of the cat family tree between the group that goes on to form the sabre- tooths – … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Fossil bones from the North Sea: An easy to way to collect fossil remains from the Ice Age?

Dick Mol (The Netherlands) Introduction In 1874, the first known mammoth remains were brought ashore, trawled off the coast of the province of Zeeland, The Netherlands. Fishermen, fishing for flatfish, caught these fossils as bycatch in their nets. (A bycatch is a fish or other marine species that is unintentionally caught while catching certain target species and target sizes of fish, crabs and so on) A museum associate in Middelburg described these bones in an extensive research report. This resulted in a sound basis for ongoing study of the lost life found on the bottom of the North Sea between the Netherlands and the British Isles, about two million to 10,000 years ago. For years the fishermen brought their bycatches ashore. Usually, these were large bones and teeth, both of mammoths and whales. In fact, the North Sea bottom used to be a vast plain during the Ice Age with mammoths walking around in large herds and this area must have been a paradise for large mammals. Apart from the mammoth remains, other species like wild horses, giant deer, deer, lions, bears, wolves, rhinos and others have also been found. Fig. 1. An upper molar of a woolly rhino, Coelodonta antiquitatis (BLUMENBACH). Thousands and thousands of woolly rhino remains have been fished from the southern bight of the North Sea between Britain and the Netherlands. Thousands and thousands of these remains ended up in Naturalis, the National Natural History Museum in Leiden. Today, this museum holds one of the largest … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Early Eocene London Clay deposits at High Ongar, Essex (Part 2)

Bob Williams (UK) In the previous part of this article (see Early Eocene London Clay deposits at High Ongar, Essex (Part 2)), I located the beds exposed at High Ongar in Essex (TQ 556809) within the general, stratigraphic framework of the London Clay. I also argued that examining the habitats in which families of crustacea live today provides clues about the sort of habitats that may have existed when the London Clay in the pits at Aveley in Essex and Ongar (TL 562024) was deposited. In this part, I will continue this comparison using modern lobsters, shrimps and other animals to provide clues about the habitats that may have existed at Ongar and at various other London Clay sites when their fossil relatives were alive. I will also show how one can locate a site like Ongar within the stratigraphic column. Fig. 1. Estimated position of the clay exposures at High Ongar Essex and nearby Aveley, showing the London Clay sedimentary deposits. At this point, it is worth bearing in mind the conditions in which the London Clay deposits are believed to have been laid down. London Clay is not one, uniform deposit. There are a number of sedimentary horizons within the deposit, each horizon reflecting the environment in which it was formed. Broadly, the London Clay is thought to have been laid down in a marine environment influenced by a tropical or subtropical climate. Water depth is thought to have averaged about 200m, but would obviously have varied locally. … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Early Eocene London Clay deposits at High Ongar, Essex (Part 1)

Bob Williams (UK) I first encountered the geological deposit known as the “London Clay” when I accompanied a friend to an exposure of the stuff. He told me that it was good for collecting fossils. It was and I was taken aback by the quality and quantity of fossil material. However, I knew nothing at all about the geological details of the sediment. However, like all keen amateurs, I wanted to know more about the deposit. To the uninitiated, the name “London Clay” suggests a single, uniform deposit. However, in truth, it does not fit that description. The name is given to a sedimentary deposit that contains at least five different and distinctive horizons (referred to as Divisions A to E). They were laid down in early Eocene times (50 to 54Ma) in conditions that were particular to slightly different environments or habitats (I use the terms interchangeably in this article). In a non-scientific way, the London Clay environments can be compared to the environments found in an ocean such as the Indian Ocean. Fig. 1. Estimated position of the clay exposures at High Ongar Essex and nearby Aveley, showing the London Clay sedimentary deposits. In broad terms, it is possible to describe the Indian Ocean as having warm, marine waters, being subject to tropical or sub-tropical climates and containing particular life forms. However, a variety of individual habitats can also be found in the Indian Ocean. There are shallow waters, deep waters, coastal waters, reef systems, trench systems, rocky … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Mammoths and the Mammoth Ivory Trade

Dick Mol and Bernard Buigues (The Netherlands) The ivory industry is flourishing using mammoth tusks and, illegally, the tusks of modern elephants. The growing hunt for mammoth tusks hampers palaeontological research and, as the two ivories are hard to distinguish, enforcement of endangered species legislation is impeded. Changes in legislation may not be practicable. However, education of the mammoth hunters may result in a win-win situation. This has now begun and the resulting co-operation has already lead to, and may lead to, more important discoveries and the securing of the remains for scientific exploration. Introduction The use of mammoth ivory for the construction of tools and artefacts is already known from Palaeolithic time. Our ancestors have used it for weapons and ornaments. The quality of the ivory of woolly mammoths, Mammuthus primigenius, found in the permafrost of Siberia as well as in North America (Alaska, USA and Yukon, Canada), is of outstanding quality and easily processed by the ivory industry. The quantity of traded ivory is substantial and the first overview of those traded amounts has been archived by Tolmachoff (1929). After this inventory, the trade has continued at an accelerated pace, especially during the last decade. Apart from the commercial value for the ivory industry, individual collectors and natural history museums often want to possess complete tusks. These intense collecting activities destroy enormous amounts of palaeontological data and obstruct the investigation of Pleistocene mammals and their habitats. It was our objective to start a discussion on how to counteract … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

In search of dinosaur eggs in Mongolia

Steven Ballantyne (UK) The Scientific Exploration Society is a well-established, UK-based charity that undertakes scientific research and community aid work in remote parts of the world. As an expedition leader for the Society, it proved to be an exciting challenge for me to lead a  month-long expedition in 2006 across the infamous Gobi Desert in Mongolia in search of dinosaur fossils. Professor Altangerel Perle, the renowned palaeontologist from The National University of Ulaanbataar, headed the scientific team. (Professor Perle has no less than six dinosaurs named after him.) The team totalled 20 in number and included Mongolian palaeontology students, botanists and zoologists, and also team members from the UK, Australia, Tasmania and Greece, all with a deep-seated interest in science. Fig. 5. The redoubtable Professor Perle. As an introduction to then non-palaeontologist members of the team, we spent our first day surveying and working at the Flaming Cliffs. This is an historic site, made famous in the 1920s by the great explorer and palaeontologist, Roy Chapman Andrews. Here, we found tiny fossil fragments of the dinosaur Protoceratops andrewsi. This was achieved by gently and methodically brushing the surface sand – a job we would become expert at over the forthcoming weeks. Jinst was the location of the first of our two significant finds. This was a very well-preserved turtle shell, a stark reminder to all that this seasonally hot and dusty land was once an ocean. The fossil included the complete upper and lower body shell and, excitingly, the small … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Fabulous Fluorite: Derbyshire Blue John

Richard M Haw (UK) Blue John is a unique variety of blue-purple banded fluorite. Hydrocarbons or oils have been deposited on some of the crystal surfaces while the mineral was forming. These oil layers are partly responsible for giving the stone an alternate blue and white banding, best seen when the stone is cut in section. It is not known to occur anywhere else in the world and is confined to an area of about 1km³ of the Carboniferous “reef” limestones at Castleton in Derbyshire. Fig. 1. Old picture taken sometime in the 1870s, showing miners digging in the Old Dining Room, now part of the show caves. I have been involved with the public caverns here for a while and I am sure many of you have visited them. However, there are many people who have never even heard of Blue John, so the following article gives a general overview without intending to be too technical. The area Castleton is a small village located in Derbyshire’s “Peak District” between the cities of Manchester and Sheffield. The village is dominated by the ruins of Peveril Castle that was built by the Normans to oversee lead mining in the area. The scenery around Castleton forms a dramatic backdrop and the rolling limestone hills end abruptly atthe vertical face of Mam Tor. Beyond and to the north are the gritstone moors known as the “Dark Peak” that eventually lead up to the two-thousand-foot-high plateau of Kinder Scout. Castleton and the surrounding area … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Seeing dramatic folded strata from the car: Sideling Hill, Maryland, USA

Deborah Painter (USA) In many states of the United States and in many locales in the United Kingdom, there are historic markers at the site of an important historic home or event. However, I wonder if every accessible rock formation had its own historic marker, would more people take the time to learn about it? The entire history of the planet is seen in rock formations. Just west of the town of Hancock, in the state of Maryland, USA at Mile Marker 74 on Interstate 68 (coordinates 39° 43’ 11.54” N, 78° 16’ 58.29” W) is the Sideling Hill road cut, a textbook example of tight folds in a mountain (Fig. 1). Until relatively recently, the visitors centre located adjacent to the cut was a perfectly complete historic marker. It gave travellers not only a place to stop to buy refreshments and relax at a picnic table surrounded by shade trees. It also provided an opportunity to read about the history of a spectacular cut in a mountain resulting from a need for safer transportation through a difficult and rugged stretch of road. Fig. 1. View west along Interstate 68 and US Route 40 (National Freeway) from the Victor Cushwa Memorial Bridge as it passes through the Sideling Hill Road Cut in Forest Park, Washington County, Maryland. (Credits: Famartin, Wikimedia Commons.) The centre still helps motorists see a geological formation safely from a walkway and an enclosed bridge. Sideling Hill’s transportation story goes back to the earlier days of road … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Urban geology: The battery on the Sloterweg

Stephen K Donovan (The Netherlands) The city of Amsterdam in the Netherlands is surrounded by a great defensive earthwork on its landward side, the Stelling van Amsterdam (= Defence Line of Amsterdam), along which are a series of forts and batteries (Figs. 1A-E and 2). This major structure was built between 1880 and 1914. The principle feature of this defensive system is a raised earthen embankment or dyke, still imposing today although breached or flattened in many places to make way for modern developments, most commonly roads. The embankment is often flanked by two canals, one on either side. Fig. 1. (A, B) The Battery on the Sloterweg, Hoofddorp, Noord Holland, the Netherlands.(A) General view of the Battery, looking approximately northwest.(B) Nameplate.(C-E) Three views of the restored embankment between the Battery on the Sloterweg and Hoofddorp station.(C) The view southeast on the northeast side of the embankment from the R-Net bus stop (routes 300 and 310) at Hoofddorp station, looking towards the Battery. The cycle path crosses the bridge and continues away from the photographer. Note the blue tractor scraping the embankment.(D) The view southeast on the southwest side of the embankment from the R-Net bus stop at Hoofddorp station, looking towards the Battery (at the end of the path in the distance). Again, note the tractor scraping the surface.(E) The view northwest from the Battery, looking towards Hoofddorp station, showing the ‘exposure’ in the foreground, which was particularly productive of builders’ rubble, including lithic fragments.(F) Details of the granite … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Geology museums of Britain: The National Stone Centre, Derbyshire

Jon Trevelyan Britain has a long and proud history of geological museums (and museums that have significant geological collections) dating back at least to early Victorian times. One need only think of William Smith’s revolutionary and magnificent, 1829 Rotunda in Scarborough to understand this (Fig. 1). Fig. 1. The Rotunda, Scarborough. Here, Smith’s fossils were (and are once again, after significant renovation to the building) arranged up a spiral staircase in the order they occur in the rock column – an extremely modern way of doing things. And, of course there is Richard Owen’s Victorian masterpiece, the Natural History Museum in London with, among many other things, its dinosaurs and exhibits of other fossils (Fig. 2). Fig. 2. The Natural History Museum, London. However, the venerable NHM raises an important question. To create a display for the public, to what extent should museums use push-button technology and pretty pictures, rather than displays of the actual subject matter? In recent years, it seems that museums increasingly want to cater merely for children (and certainly not adults), who (apparently) can only be engaged by technology rather than, for example, a well-labelled and beautifully prepared fossil ammonite. The belief seems to be that they simply cannot look at exhibits in the way that Victorians did – with specimens set out in cabinets – but rather, need to be engaged by electronics and graphics that are one remove from the subject matter itself. I suspect that it was this belief that lead the NHM … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Book review: Trilobites, Dinosaurs and Mammoths: An introduction to the prehistory of the British Isles, by James McKay (for the Palaeontological Association)

This is an interesting little booklet and very much a new departure for the Palaeontological Association. You will be aware that I have reviewed several of its many excellent fossil guides in this magazine. However, this recently published tome is somewhat different.

Urban geology: An inselberg in Rotterdam

Stephen K Donovan (The Netherlands) The Low Netherlands, much of which is below sea level, is a broad area of the country that (very approximately) parallels the coast and is kept ‘dry’ by major works of civil engineering (IDG, 1985, pp. 6-7). Geologically, it is a flat expanse of Holocene deposits; most of the author’s experience is in the coastal plain (de Gans, 2007), where I both live and work. There is no significantly older geological deposit or feature anywhere in this region – no coastal cliffs, mountains or quarries to tempt the attention of the wandering Earth scientist. So, it is commonly the ex situ that demands the geologist’s attention rather than the in situ. For example, I have commented previously on such diverse topics as the use of imported limestone to make a false natural bridge (Donovan, 2014), various aspects of building stones (for example, Donovan, 2015, 2019) and gabions mimicking sedimentary bedding, at least from a distance (Donovan, 2018). Of these examples, the natural bridge is the most exotic; although such a bridge might be expected in karstified limestone landscapes almost anywhere, my own experiences of them are limited to the Antilles (Miller and Donovan, 1999; Donovan et al., 2014). In this article, I describe a further man-made structure mimicking an even more exotic geomorphological phenomenon, most closely associated in the minds of Earth scientists with Africa. It is a structure that I have, until now, only known from textbooks – I refer to a mock inselberg … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Barton Beds of Hampshire

Ray Chapman (UK) The cliff exposure of the Barton Beds between Highcliffe in Dorset and Barton on Sea in Hampshire are the type section of the Bartonian age and are highly fossiliferous. They are Middle Eocene in age and were deposited between 41.3 and 37Ma. They extend to Southampton in the east, Wareham in the west and Fordingbridge in the north with some other minor exposures in Southeast England. Fig. 1. The Barton Beds viewed from Highcliffe. The beds are marine clays, silts and sands deposited in a generally shallow sea that stretched to the southeast of the present shoreline and across the Hampshire-Dieppe Basin. Terrestrial input was from the west and northwest. The environment was sub-tropical partly because the average global climate was higher than today and partly because Britain was about 100 further south of its current position. The beds are alleged to contain some 600 species of molluscs, marine vertebrates, reptiles and other taxa. Christchurch Bay, between Milford on Sea and Bournemouth, has developed over the last 10,000 years. Previously, the ‘proto-River Solent’ ran eastwards from the rivers Frome, Piddle, Stour, Avon and other small rivers. It ran behind what is now the Isle of Wight along what is now the Solent and joined the large ‘Channel River’ flowing westwards from the Rhine, Rhone and Seine. At the end of the last glacial period, the chalk ridge to the south, which joined what is now the Needles on the Isle of Wight and Handfast Point on Studland, … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Urban geology: Brush up your neoichnology

Stephen K Donovan (The Netherlands) It was a dry Saturday in February (2014), but it was blowing a gale such that some gusts stopped me dead in my tracks. My son, Pelham, and I were out for a walk in the Haarlemmermeersebos, which roughly translates as ‘the wood of the lake of Haarlem’. The area where we live, which includes the nearby Amsterdam Schiphol International Airport, is the bed of a lake that was drained over 160 years ago. So it is a flat, featureless, polder landscape (Ministry of Foreign Affairs, 1985, pp. 10-11), apart from what man has put into it; and is criss-crossed by canals and, less commonly, dotted by lakes. The canals in the Haarlemmermeersebos landscape that are intended for water transport are few; rather, most are part of the water management system in a landscape that is below sea level. In such a landscape, the weekend geologist must look hard for ‘exposures’. Building and decorative stones are always of interest (Donovan, 2014). Beachcombing on the nearby North Sea coast can be rewarding, particularly after storms when Quaternary peat clasts are washed up on the shore (Donovan, 2013). But, in truth, there is more potential for the geomorphologist than the geologist or palaeontologist. The point of our excursion in a gale was to model palaeontological collecting and to hone our observational skills in the open air. I had discovered a path paved with many hundreds of recent sea shells and rare flint pebbles in the Haarlemmermeersebos (Fig. … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Mary Anning and the Jurassic Dragons

Ray Goodwin (UK) It was a hot and sultry summer afternoon in August 1800. A happy crowd was gathered in the small town of Lyme to watch an exhibition of horse jumping in the nearby Rack Field. No one could have guessed that, before the day was out, tragedy would strike from the skies and three women would lie dead beneath a clump of elm trees. With a little 15-month-old baby in her arms, Elizabeth Haskings and two young friends hurried for shelter as, late in the afternoon, the sky darkened and torrential rain began to pour down from the heavens. Minutes later, a brilliant flash of lightning hit the trees and a terrible thunderclap reverberated around the nearby cliffs. As the rain stopped, a horrified crowd walked towards the trees and, amid the charred remains, they saw the outlines of three huddled bodies lying on the ground. The three women were terribly burnt and had been killed instantly. Sheltered by the body of Elizabeth, the baby lay unconscious but, after bathing in water, soon recovered consciousness. Legend has it that she was transformed from being a quiet, ordinary baby into a child of exceptional liveliness and intelligence. Whether this was strictly true or not, we may never know.  However, it is a fact that the child, whose name was Mary Anning, was destined to become one of the greatest palaeontologists of the early nineteenth century. Mary Anning was born on 21 May 1799 in the small Dorset town of Lyme. … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Seeds from the London Clay

Joe Shimmon (UK) With good luck and perseverance, some beautiful fossils can be collected from the London Clay, which outcrops in the south east of England. The phosphatic remains of crustacea, fish and other, rarer vertebrates are well known, and information and images of them are easily accessed, particularly on the Internet site: Sheppey Fossils. (See also Fred Clouter’s article, Sheppeyfossils.com: The genesis of a website, for a review of this website.) However, the formation’s hugely diverse floral assemblage is often overlooked, with little easily accessible information to be found on the web. Therefore, in this short article, I aim to introduce the most interesting of the London Clay’s plant fossils – its fossil seeds. Fig. 1. Various seed shapes. The London Clay Formation is a marine geological formation of Ypresian (Lower Eocene Epoch, about 56 to 49Ma) age. It consists of stiff, bluish-coloured clay, which becomes brown when weathered. And it provides one of the most varied fruit and seed floras in the world, which also happens to be the only diverse flora fossil assemblage from the Lower Eocene in Europe. There are 500 or so recognised species, which would have inhabited mangrove and tropical habitats much like Indonesia or East Africa today – bordering a warm, shallow ocean. Commonly found are specimens belonging to magnolia, vines, dogwoods, palms, laurel and bay, with a third of the fossil species present belonging to genera that are still found living today. Fig. 2. A selection of seeds. London Clay seed fossils … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Alluvial gold: A geological model (Part 2)

Philip Dunkerly (UK) In A geological model for the alluvial gold environment (Part 1), the first part of this article, I discussed how alluvial gold is found and suggested a geological model for alluvial gold deposits. (Readers are recommended to have another look at that part to remind them of the model.) In this second part, I now turn to the nature of the gold itself. Fig. 1. Gold bullion bars of 400 troy oz. Fig. 2. Sites from around the world. Gulch gold Gulch gold is the coarsest that exists in any part of a river system. If nuggets (pieces of gold weighing more than 0.1g) are present, they will mostly be found in gulches (narrow ravines), provided suitable traps are present, such as irregular bedrock. In gulch alluvium, the vast majority of the gold will be found on, or in crevices within, the bedrock. Gulch gold is often coarse and angular and may contain silicate debris, especially quartz. As examples, gold from Victoria Gulch on the Klondike was described as “sharply angular”. In the Ballarat gullies, some enormous nuggets were found and Canadian Gully yielded nuggets of 50.4, 34.7 and 31.4kg. At Bendigo, White Horse Gully, a 17.8kg nugget (including some quartz) was found. (Interestingly, of a list of 92 Victorian nuggets, 34 came from localities specifically named “gullies”.) Finally, in the Sierra Nevada of California, most of the gold is from gulches or minor streams close to croppings. Fig. 3. Old hydraulicking operation of terrace gravels, note … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Sheppeyfossils.com: The genesis of a website

Fred Clouter (UK) The Isle of Sheppey is situated at the mouth of the Thames estuary and is a part of the North Kent marshes. The north coast of the island has about 5km of London Clay exposures that are highly fossiliferous. The London Clay here was laid down between 54 and 48mya, during the Eocene epoch, on the shallow shelf of a semi-tropical sea near the estuary of a major river system. I cannot remember just when it was that I decided to embark on the project of building a website about fossils and fossil collecting in the Isle of Sheppey. However, I do know that a combination of factors led to it. The first was my rapidly growing collection of fossils from this area. The second was the book London Clay Fossils of the Isle of Sheppey that the then Medway Lapidary and Mineral Society had decided would make a good Millennium project. Information covering the fantastic fossils found there was not readily available. The only information often could only be found in old and difficultto- obtain monographs written in the Nineteenth Century or books written in French relating to fish fossils found in Britain or in Belgium and Holland where there are deposits of a similar age. As this book was a collective undertaking, my role was to take the pictures. This meant that I would have access to fossils from many private collections as well as some held in various museums. Lastly and most importantly, was … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Alluvial gold: A geological model (Part 1)

Philip Dunkerly (UK) Mankind almost certainly first found gold when a yellow, glint from the bottom of a stream bed attracted the attention of one of our ancestors in pre- historic Africa. Ever since, the allure of gold – its colour, improbable density, malleability and scarceness – meant it has been prized, and great efforts have been made to accumulate it. Most ancient peoples venerated and coveted gold and used it for decoration, and empires used gold as a store of value and a medium of exchange. The Egyptians are known to have used gold as early as about 5000 BC, followed by many others, including the Romans, the Incas, the Spaniards and, of course, the Anglo-Saxon invaders of North America, Africa, Australia and New Zealand. Fig. 1. Spectacular Roman paleogravel workings at Las Medulas, NW Spain, now a World Heritage site. The mouth of one of the tunnels through which water was released from a header tank is visible in the shadow. Fig. 2. Panoramic view of Las Medulas, worked by sluicing using water brought through canals up to 60km long. Though gold was won from hard-rock deposits in ancient times, most gold until perhaps 1900 was won from riverbeds, and was traditionally called alluvial or placer gold. Prospecting for alluvial gold required relatively little equipment and always attracted hardy pioneers willing to forego the comforts of society in the hope of ‘getting rich quick’. The gold they found – if they were lucky – could almost instantly be … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

The Deccan Traps, India (Part 4): Quaternary sediments of the Godavari River basin, Maharashtra

Mugdha Chimote (India) The discovery of Quaternary sediments around Godavari River in Maharashtra (Fig. 1) was something of an accident. Sankalia (1952) first encountered these sediments while excavating the Lower Palaeolithic Industry in the region. Upon discovery, Sankalia brought onboard many geologists, such as Prof S N Rajaguru, Shanti Pappu, Gudrun Corvinus and R V Joshi, to bring an interdisciplinary approach to the study. Based on their geomorphic studies, Sankalia et al. (1952) concluded that the Quaternary palaeoclimates differed from present climates: the bedload stream represented wet climates, while the fine-grained sediments represented dry climates. Following this discovery, the Archaeological Society of India conducted similar such studies in the Narmada, Pravara and Tapi basins. Fig. 1. Location map of the study area. Quaternary records of upland Maharashtra include colluvial (material transported by the action of gravity) and alluvial (material transported by river) sediments. Along the river channels, alluvial sediments occur as discontinuous outcrops, whereas those in the basins do not exceed a thickness of 50m. Quaternary sediments account for the recent geological strata, which lie on the uppermost layers of earth and have been exposed relatively to the least amounts of erosion. The Earth underwent dynamic climatic variations in the Quaternary period, from glacial-interglacial events, development of monsoonal wind patterns, the formation of deserts and palaeomagnetic reversals, to mass extinctions. These incidents in turn led to geomorphic processes, such as the rejuvenation of rivers, alteration of those rivers’ courses during each rejuvenation and the occurrence of flash floods. It is … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

A field guide to Barbados (Part 6): Central Barbados

Stephen K Donovan (The Netherlands) Stop 1. Waterford District, near Codrington Agricultural Station (approx. 59º 36’ 8” W 13º 6’ 49” N; Fig. 1) The area considered in the final part of this guide is outlined in A field guide to Barbados (Part 1): Introduction (Donovan & Harper, 2010, fig. 1e) and Fig. 1 in this article. As with other articles in this series, the starting point is Bridgetown. Fig. 1. Locality map showing the positions of Stops 1 to 6 in central Barbados. Only those roads relevant to this excursion are shown (after Donovan & Harper, 2005, fig. 12). This figure should be used in conjunction with the geological map of Poole & Barker (1983) and any tourist road map. Key: abc = ABC Highway; B = Bridgetown; 1 = Waterford district (Stop 1); 2 = Dayrells (Stop 2); 3 = Harrison’s Cave (Stop 3); 4 = Welchman Hall Gully (Stop 4); 5 = Horse Hill (Stop 5); 6 = Hackleton’s Cliff (Stop 6); coastline stippled. From the ABC Highway, turn southwest towards Bridgetown on Highway 3. In the area of the turnoff towards Codrington Agricultural Station (on the right), in the parish of St Michael, examine the road cutting, starting at the southwest corner and walking northeast. This is Stop 6 of Humphrey & Matthews (1986, p. 101), in the Middle Coral Rock, just above the First High Cliff and dated at 194,000 years old. The succession shows a range of reef-related biologically-determined facies (that is, sedimentary rocks … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Check those damaged ‘Megalodon’ teeth

Michael E Howgate (UK) Back in the days when I gave my ‘Doctor Dinosaur’ talks to museums, school groups and ‘gifted children’, I would take with me: a plaster cast of the Baryonyx claw; a beach rolled Iguanodon vertebra; and, star of the show, ‘a fossilised dinosaur poo’ (which, in reality, was an Ichthyosaurus coprolite from Lyme Regis). These were some of my collection of props, which helped engage the children through what might otherwise have been a run-of-the-mill slide presentation. Some of the bits-and-pieces I picked up to pass around among the children were a selection of broken and hence dirt cheap Carcharodon megalodon teeth (Fig. 1). (I use Carcharodon instead of the more correct Carcharocles as it is still in common use. The term ‘Megalodon tooth’ is often used by fossil dealers as a short-hand term.) These stood in for the teeth of every child’s favourite dinosaur, the fearsome Tyrannosaurus rex. I would pass the teeth round and get the children to feel the serrated edge as a prelude to explaining how a serrated blade was better at cutting steak – or even a loaf of bread – than a sharper carving knife. “Only try this at home if you are supervised by both parents” was my health and safety rider at the end of this explanation. Fig. 1. Half of a C. megalodon tooth. A cheap and cheerful stand-in for a T. rex tooth. Carcharodon (now Carcharocles) megalodon, which used to be considered the ancestor of the … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

A field guide to Barbados (Part 5): The Scotland District

Stephen K Donovan (The Netherlands) Stop 1. Chalky Mount (approximately 59º 33’ 15” W 13º 13’ 55” N; Fig. 1) The area considered in this part of the guide is outlined in Donovan & Harper (2010, fig. 1d) and Figs. 1 and 2. As with other articles in this series, the starting point is Bridgetown. Those wishing to examine the succession and structure of the Scotland District in considerably more detail than outlined below are referred to Speed (2002). This can be complimented by Patel’s (1995) discussion of the geomorphology. Readers are referred to the glossary in A field guide to Barbados (Part 2): The coastal geology of southeast Barbados Fig. 1 Locality map showing the positions of Stops 1 to 7 in the Scotland District of Barbados (after Donovan & Harper, 2005, fig. 11). Only those roads relevant to this excursion are shown. This figure should be used in conjunction with the geological map of Poole & Barker (1983) and any tourist road map. Key: C = Conset Point; H = Horse Hill; W = Welchman Hall; Stop 1 = Chalky Mount; Stop 2 = Bissex Hill; Stop 3 = Coconut Grove; Stop 4 = exposures on East Coast Road; Stop 5 = oil seep; Stop 6 = Bathsheba; Stop 7 = Bath Cliff; coastline stippled. Fig. 2 Geological map of the Scotland District of Barbados (after Donovan & Harper, 2005, fig. 2; Donovan, 2010, fig. 3; simplified after Speed, 2002, fig. 9). Key: open stipple = basal complex; … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Book review: Inscriptions of Nature: Geology and the Naturalization of Antiquity, by Pratik Chakrabarti

Maybe it’s a result of my social anthropology and geological background, but I found this difficult but fascinating book a great read. It’s about nineteenth century India. It is not about the modern geological science or social anthropology of the subcontinent, but rather, the geological imagination of India, as well as its landscapes and people, and its history.

Book review: Fossilien im Alpstein: Kreide und Eozän der Nordostschweiz (Fossils in the Alpstein: The Cretaceous and Eocene of north-eastern Switzerland), by Peter Kürsteiner and Christian Klug

This is clearly one for our German speakers, of which I am glad to say there are many. However, this glossy and excellently produced hardback, covering the fossils of the Alpstein region of Switzerland, may have general appeal to anyone interested in the identification and study of fossils from various parts of the world, despite being written in German.

India’s ‘Dinosaur Fossil Park’ – Raiyoli

Khursheed Dinshaw (India) Raiyoli is a village near Balasinor in the state of Gujarat, India, which has been attracting palaeontologists because of its dinosaur fossil park (Fig. 1). Curious to know more about the park, I visited Balasinor to meet Princess Aaliya Sultana Babi (Fig. 2), who is also known as the ‘Dinosaur Princess’. I had booked my stay at The Garden Palace, which is the private residence of the royal family of Balasinor. The property also offers guests’ accommodation and signature experiences. While relishing a sumptuous dinner and chatting with the warm and hospitable princess, I learnt about how she got involved with the site: “In the year 1997, Raiyoli was visited by leading palaeontologists from the Indian states of Uttar Pradesh and Rajasthan for excavation purposes. They came to our residence for tea and, during the conversation about the site, I realised that it was time to act on my calling. I say “act” because my mother, Begum Farhad Sultana, used to tell me that, as a child when I was learning the alphabet, when it came to the letter ‘D’, it was not D for ‘dog’. Instead I learnt D for ‘dinosaur’. Spellings like Brontosaurus fascinated me even then,” she mentioned nostalgically. Fig 1. The Dinosaur Fossil Park at Raiyoli. The timing to get involved with dino-tourism was right, as foreigners began to express an interest in visiting the site. So, who better than Aaliya to guide and show them around the site? Her passion and dedication … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.