This category can only be viewed by members. To view this category, sign up by purchasing Annual subscription, 12 Month Subscription or Monthly subscription.

The disparids: Weird and weedy crinoids of the Palaeozoic

Stephen K Donovan (Netherlands) and David N Lewis (UK) Palaeozoic crinoids are uniformly beautiful and come in many shapes and sizes, but almost all fall into one of three principal groups. The camerates are the largest and most robust, commonly incorporating the lower part of the arms into an enlarged cup with a plated roof (tegmen), producing a structure that is commonly reminiscent of a golf ball. The cup may be monocyclic (one circlet of basal plates supporting the radials; see Glossary (below) for explanation of specialist terms) or dicyclic (two basal circlets, that is, infrabasals and basals, supporting the radials). The arms of camerate crinoids bear multiple, fine branchlets called pinnules that must have formed an efficient ‘net’ for feeding on plankton. The second major group, the cladids (plus the closely related flexibles) are dicyclic, lack an armoured tegmen and, except for some advanced (Upper Palaeozoic) forms, lack pinnules. The flexibles may also show a camerate-like feature with small plates separating the arms. And then there are the disparids. The disparids were the ‘weeds’ of the Palaeozoic crinoids; generally smaller and less impressive than other crinoids, but including some unusual, even bizarre forms. Herein, we introduce the disparids of the British Palaeozoic, examining their form and function, and where to collect them. The disparid cup was commonly small, always monocyclic and lacked an armoured tegmen, but had a prominent anal sac or tube in some groups. The arms were usually slender, lacked pinnules and were branched or unbranched, and … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Geology museums of Britain: Kendal Museum of Natural History and Archaeology, Cumbria

Jon Trevelyan (UK) Kendal Museum is one of those charming, cluttered museums I feared were dying out (Fig. 1), but still seem to defy the odds and continuing surprising visitors. Like the museum in Whitby (see Geology museums of Britain: Whitby Museum, Yorkshire), at Kendal, there seems to be exhibits stuffed anywhere possible, with surprises everywhere you look. The museum itself is a local museum in Cumbria, on the edge of the Lake District in northwest England. It was founded in 1796 and includes collections of local archaeology, history, geology and natural history from around the globe, but especially from the Lake District itself. Fig. 1. A model boat and bicycle – typical of the eclectic displays. In April 2011, Kendal Museum achieved the Visitor Attraction Quality Assurance Scheme assessment, awarded by Visit England. It is managed by Kendal College on behalf of South Lakeland District Council and is part of the Arts and Media campus at the North End of Kendal. History The Museum of Natural History and Archaeology is one of the oldest museums in the UK, with displays of local and global natural history, and archaeology. Kendal’s first museum was founded in 1796 by William Todhunter, who exhibited a collection of fossils, minerals, plants, animals and antiques. In 1835, the Kendal Literary and Scientific Society took over the museum and, as the collection grew, the museum had to be rehoused several times. In 1913, the current building was offered to the Town Council to house the museum. … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Oxygen-free storage for pyrite speciments

Dr Caroline Buttler (UK) Oxygen is responsible for the majority of chemical reactions that lead to the decay and degradation of museum specimens; the corrosion of iron and the fading of many pigments when exposed to ultraviolet light could not occur without the presence of oxygen. It is also essential for the life forms responsible for biological decay such as insects, fungi and bacteria. The most common oxidation reaction affecting geological specimens is pyrite decay, which damages specimens containing pyrite or marcasite.  Pyrite decay occurs when the sulphide component in these minerals oxidises to form ferrous sulphate and sulphur dioxide, and can result in the complete destruction of the specimen and the associated labels and packaging materials. If pyrite specimens can be stored without oxygen then deterioration could be prevented. Fig. 1. Ammonite specimen with pyrite decay (©National Museum of Wales). The technology to produce oxygen-free environments to museum standards has burgeoned in the last few years. Nitrogen and other inert gases such as argon and helium have been successfully used to display specimens without oxygen, but it is costly and only used for rare or valuable objects. For example the American Charters of Freedom, which include the Declaration of Independence, the Constitution and the Bill of Rights, in the Rotunda of the National Archives Building in Washington, DC, are displayed in cases inside which an anoxic environment has been created containing a humidified argon atmosphere at 19°C. Anoxic storage can also now be achieved relatively cheaply and efficiently with … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Gigantic rhizodonts in Scotland’s lochs: The one that got away

James O’Donoghue (UK) Fig. 1. If gigantic rhizodonts still lurked in Scotland’s lochs, anglers might find they are biting off more than they can chew. (Illustration by Megan Whatley.) Every angler dreams of reeling in a prize catch – a 40lb pike perhaps, or a whopper of a salmon. Record-breaking fish fire the imagination as few other creatures can, and the lochs of Scotland have inspired many a fishy tale. However, even the tallest of these stories pale into insignificance when compared with the primeval occupants of the lochs. Had you cast a line there 340 million year ago, you could have ended up as bait yourself. For Scotland’s ancient lakes and rivers held a behemoth of a fish known as Rhizodus hibberti (Fig. 2), which notched up a truly staggering snout-to-tail length of seven metres. It was the ultimate ‘one that got away’, a predator that was half as big again as a great white shark. To this day, it remains the largest freshwater fish ever to have lived. Rhizodonts, the group of fishes to which R. hibberti belonged, may have been the last truly gigantic predators to live in fresh water, suggests palaeontologist Jon Jeffery, an expert on one of the most widely distributed species, Strepsodus. They also have the distinction of being the most primitive ‘tetrapodomorphs’ known. That is, they belong to the group of fishes from which tetrapods descended. Tetrapods are vertebrates that colonised land and includes all amphibians, reptiles, birds and mammals. Fig. 2. Jaw … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Locations Nova Scotia (Part 3): Wasson’s Bluff – a locality near Parrsboro

George Burden (Canada) The Wasson’s Bluff fossil site, near Parrsboro, is the most geologically recent, yet perhaps the most fascinating of the locations of interest to palaeontologists in Nova Scotia. Located on the Bay of Fundy’s Minas Basin, fossil buffs can view what are perhaps the smallest dinosaur footprints ever found. In 1984, amateur palaeontologist, Eldon George, discovered the track ways, most likely made by a juvenile Coelophysis sp., which lived 200 million years ago, at the Triassic-Jurassic boundary. Two years later, Neil Shubin of Harvard University and Dr Paul Olsen of Columbia University, discovered at this site over 100,000 tiny bones of ancient crocodiles, various sized dinosaurs, lizards, fishes and sharks. Their efforts were funded by the National Geographic Society, which recognised that this was North America’s largest find ever of fossils from this era. Fig. 1. A walking tour at Wasson Bluff near Parrsboro where the remains of a dinosaur are being uncovered by a group of geologists from the Fundy Geological Centre. Vast mudflats in this region’s ancient terrain record the tracks of the creatures from this time. Covered by sand washed down from the Cobequid Highlands, an elevated, quartz bearing area, to the north of Parrsboro, natural casts of the footprints were formed. However, today, this site provides an ideal location to view more than just trace fossils from the crucial Triassic-Jurassic transition period, during which a mass extinction occurred. It is notable in that both the remains of bones and foot prints (which are so … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Locations in Nova Scotia (Part 2): Blue Beach – a locality in the Annapolis Valley

George Burden (Canada) In this second article on fossil locations in Nova Scotia in Canada, I will discuss the fascinating site of Blue Beach. This is perhaps the least known and most under-appreciated of the three major fossil cliffs in Nova Scotia. Most residents of the province (including me, until a few months ago) are unaware of the site. This is a pity, for it is the most accessible of the three sites in the Halifax Regional Municipality, which is the major population centre of Nova Scotia. Blue Beach is located just outside the town of Hantsport in the Annapolis Valley, just off Highway 101. Chris Mansky, a knowledgeable amateur palaeontologist, and Sonja Wood own and run a private interpretation centre and museum. Chris takes visitors on a tour of the museum and down to the beach, pointing out interesting fossils and sharing his, not inconsiderable, knowledge of this important deposit, which dates from Romer’s Gap in the Early Carboniferous Period (360  to 340 million years ago). Romer’s Gap, named after palaeontologist Dr. Alfred Romer, was a period from about 360 to 340 million year ago from which fossils are rarely found. It is not known for sure why this is the case, but this was also a crucial time for tetrapod development. Along with the Kirkton Quarry in Bathgate, Scotland, Blue Beach is one of the few sites Gap fossils are accessible. As Chris says: One of the first things a visitor will notice about Blue Beach is that … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Book review: Essex Rock – Geology beneath the Landscape by Ian Mercer and Ros Mercer

To be fair, Essex has never been famed or well-regarded for its geology, at least not by me. I know it has its locations – Walton-on-the-Naze springs to mind – but not a lot else. However, this guide is set to change all that. Full colour photographs and illustrations (on virtually every page), with 416 pages of excellent text, with particularly good sections on the London Clay and Red Crag, it is as good as it gets. It is worth owning for its own sake, even if you are not going to, or are living in, Essex.

Locations in Nova Scotia (Part 1): Joggins – a Carboniferous fossil forest

George Burden (Canada) There are three fossil sites of major interest to both professional and amateur palaeontologists in Canada’s east coast province of Nova Scotia. These are the Upper Carboniferous Horton’s Bluff/Blue Beach site, the Parrsboro fossil site at Wasson’s Bluff (which just post-dates a mass extinction event at the Triassic-Jurassic boundary) and the Lower Carboniferous site of Joggins. It is this last site that I will concentrate on. Fig. 1. Map of Canada and the Joggins site. Perhaps, the most famous of these three is the Joggins site, which has just received designation as a UNESCO World Heritage Site. Its fossil cliffs, which are the remains of a 300 million-year-old forest, are washed twice daily by the immense Bay of Fundy tides – at up to 15m, the highest in the world. New fossils are constantly unmasked by tidal action, and the trunks of huge Lycopod trees can be seen studding the cliff face. Fig. 2. Bark of Lepidodendron sp. (Lycopod). Joggins became world-famous in 1851, when Sir Charles Lyell and Sir William Dawson discovered the remains of what is, arguably, the World’s oldest reptile, Hylonomus lyelli, tucked inside the trunk of a fossil tree. Dawson guessed correctly that small creatures would become trapped in hollow tree trunks and, indeed, multiple specimens are often found in these locales. Later, Charles Darwin would mention the site in his book, The Origin of the Species, prompting some to call Joggins the “Coal Age Galapagos.” A walk on the beach at Joggins … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Geology museums of Britain: The Hunterian, Glasgow

Jon Trevelyan (UK) This is the second of my articles on the geology museums of Glasgow (see also Geology museums of Britain: Kelvingrove Art Gallery and Museum, Glasgow). The Hunterian contains for some Scotland’s finest collections, covering subjects such as Roman artefacts from the Antonine Wall (fascinating, given that its big, southern, brother – Hadrian’s Wall – gets all the attention), and scientific instruments used by eminent Scottish scientists, James Watt, Joseph Lister and Lord Kelvin. In fact, the Hunterian’s whole collection is ‘Recognised’ as nationally significant in Scotland. It is also home to one of the most distinguished public art collections in Scotland. However, as always, it was the geology and palaeontology that I went to visit (Fig. 1). Fig. 1. The hall of the museum, with the geology and palaeontology exhibits set out below. The Hunterian’s founding collection came through the bequest of the eponymous Dr William Hunter (1718-1783). The museum itself opened in 1807, and a catalogue was published in 1813 (Fig. 2) by Captain John Laskey, who took visitors through the museum room by room and case by case, describing the items on display. Fig. 2. The catalogue of the original museum contents, by Captain John Laskey, with a lovely shark’s tooth from the original collection. And, apparently, the fossil collections are among the largest in the UK and were built up over the last 200 years from departmental research and teaching collections. Fig. 3. Ripple marks covered in trace fossils. Fig. 4. Copious fossils on … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Geology museums of Britain: Kelvingrove Art Gallery and Museum, Glasgow

Jon Trevelyan (UK) When I went up to Glasgow to attend my son’s graduation, I deliberately made some time to visit Kelvingrove Art Gallery and Museum to explore its 22 galleries. These cover everything from art to animals, Ancient Egypt to Charles Rennie Mackintosh and much, much more besides. However, the reason why I am including Kelvingrove in my series covering the geology museums of Britain, and the real reason for my visit, is its gorgeous collection of fossils, in particular, significant ones found from Scotland and, indeed, in and around Glasgow. Located in the beautiful Kelvingrove Park (Fig. 1), the art gallery and museum opened in 1901 and is clearly a firm favourite with local people and visitors. It has stunning architecture (Fig. 2) and a family friendly atmosphere; and has relatively recently been redesigned – without losing its Victorian traditions and ideals – so that it is upgraded for the twenty-first century. Fig. 1. The museum is located in Kelvingrove Park, which necessitates a lovely walk through the grounds of this Victorian, public park. Fig. 2. The magnificent frontage of Kelvingrove Art Gallery and Museum. In fact, Kelvingrove started life as typical Victorian museum (Fig. 3), founded by (as the guide puts it): … the wealthy classes to assert their cultural worth and improve the people of the city”. Fig. 3. The roof of the Victorian entrance hall. However, as I say, there have been improvements, which were achieved by asking Glasgow residents what they approved of the … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Sharks of the Moroccan phosphates

Dr Charlie Underwood (UK) Shark teeth are amongst the most iconic and sought after of fossils. However, for most of us, collecting them can be a difficult or even unpleasant task. I am sure that most collectors in northern Europe are familiar with picking their way over slipped cliffs of clay, in the teeth of a freezing winter gale, to collect the few treasures that erosion leaves on the beach. Alternatively, the more dedicated are used to carrying hundreds of kilos of clay home and painstakingly passing it through a sieve before even knowing if there are any fossils there. But it is not all like this. There are a number of places in the world where the vagaries of sedimentology have allowed bone-beds (or phosphorites) to develop, within which vertebrate fossils, and shark teeth in particular, are hundreds of times more abundant than in a normal marine sediment. By far the most extensive of these deposits are in Morocco. Below the dusty scrub and parched farmland of northern Morocco lie the largest reserves of mineral phosphate known. Vast complexes of open-cast mines, one stretching for nearly 30km, have been cut into these deposits, with a network of conveyor belts transporting the phosphate sand and rock to the processing factories turning the rock into fertilizer. These great phosphate deposits were laid down in a sea saturated with nutrients and teeming with life. As a result, the phosphates are crammed with the fossilised phosphatic bones and teeth of fish, sharks and … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Geology museums of Britain: Yorkshire Natural History Museum, Sheffield

Jon Trevelyan (UK) Fig. 1. The museum’s logo. To no little fanfare, this new museum of natural history (and, in particular, fossils) opened on 13 August 2022. James Hogg, who is Chairman at the Yorkshire Natural History Museum (Fig. 2), only had the idea for it earlier this year. Fig. 2. The museum from the outside. James (Fig. 3) true passion for palaeontology came when he was a student. His background is one an economist (in particular, the economic history of institutions and economic growth). However, his idea for the museum is based on his interest in growing a public institution so as many can benefit as possible in the long-run. Fig. 3. James Hogg, with the skull of a huge ichthyosaur. After the idea of the museum took shape, James quickly renovated what was a badly dilapidated property (Figs. 4 and 5) to make it happen. Fig. 4. The inside of the building earlier this year. Fig. 5. The refurbishments have had to be extensive. Now finished, the museum’s exhibits include fossils that have been found along the Yorkshire coast from the Jurassic period, from ammonites to belemnites to those huge behemoths, such as ichthyosaurs, that once hunted in the Jurassic oceans. However, not only is the museum a store for natural history specimens, it will also actively research the collection and will provide visiting academics free access to it. That is, the stated purpose of the museum is to create a dedicated natural history museum in the north … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Fossils down under or finding fossils in boreholes

Dr Susan Parfrey (Australia) You may be familiar with collecting fossils from eroded rock surfaces, a riverbank, a road or rail cutting, a cliff face or a fresh cut surface such as a quarry. But there is another way fossils can be recovered – from boreholes. Boreholes have been drilled in Queensland for many years for exploration and to investigate the regional geology. Since Queensland is a relatively flat part of Australia, outcrops can be hard for geologists to find. Therefore, drilling offers a way of studying sub-surface geology that assists in the understanding of the stratigraphy of the State. Usually, drilling does not produce usable macrofossils. The process of drilling normally involves pushing a mud mixture down the borehole and over the bit, for cooling and lubrication. In this process, larger fossils are forced to the surface in the drilling mud and are broken into small pieces making them impossible to identify. However, microfossils can be recovered, as they are so small they are undamaged by the drilling process and are recovered at the surface to be identified and used in biostratigraphy (to date and correlate rocks). However, in Queensland, drilling was undertaken by the Geological Survey that retrieved lengths of core which provided access to deeply-buried strata and allowed recovery of both micro and macrofossils. Exploration companies also often retrieved short lengths of core at specific levels of interest, which sometimes contain fossils. Before a borehole is drilled, considerable geological mapping of the surface is undertaken. Only then … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

The dinosaurs of the Isle of Wight

Simon Clabby (UK) There has been much written about the dinosaurs of the Isle of Wight over the years. For example, Gideon Mantell, who discovered Iguanodon in 1821, wrote a book on the geology in 1847, in which he refers to its fossil fauna. However, like all sciences, palaeontological research does not stand still. Every year, our knowledge about dinosaurs changes as new discoveries are made. This is true even of the Isle of Wight, which, since the 1980s, has experienced a sudden upsurge in research, making many books on the subject now out of date. The first dinosaur discoveries took place in antiquity, with local stories of “stone horses” (presumably Iguanodon, due to its horse-like skull) being found in the cliffs. However, the first scientific discoveries took place in 1829, when William Buckland (describer of Megalosaurus) described some Iguanodon material from Yaverland. The mid 1800s was a time of massive interest in dinosaur research, with the Rev. William Fox, curate at Brighstone village (not far from the fossil-rich cliffs at Brighstone bay) apparently neglecting his duties to look for fossils. In fact, he managed to discover four new species during his tenure at Brighstone. Fig. 1. Brighstone Bay. There was a bit of a lull in the early twentieth century, with nothing new being discovered until the 1970s. However, since then, at least three new species have been described, and a further seven previously known species being reassigned to new taxa. The dinosaurs of the Isle of Wight almost … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

It doesn’t always have to be dinosaurs – a short review of rauisuchian archosaurs

Stephan Lautenschlager (Germany) and Dr Julia Brenda Desojo (Argentina) Fig. 1. Reconstruction of Batrachotomus kupferzellensis. (Museum of Natural History, Stuttgart, Germany.) Among the multitude of fossil animals, dinosaurs have always been the most popular and fascinating. Loved by six-year-olds, Hollywood directors, toy-designers and scientists alike, they not only dominated most of the Mesozoic Era, but still dominate our understanding of palaeontology. However, only a few people are aware that, before the dinosaurs started their 150-million-year-long global dominion, there was an equally successful and remarkable group of fossil reptiles – the ‘rauisuchians’ (Fig. 2). In this article, we will try to shed some light on these enigmatic and commonly unknown tetrapods, which were as adapt and predominant in their time – and, to be honest, as cool – as the dinosaurs. Fig. 2. Occurrence and evolution of the major archosaur groups. A history of rauisuchian research The first rauisuchian fossil was found in 1861 by the German naturalist Hermann von Meyer. It consisted of a single maxilla of Teratosaurus suevicus and was identified as an early dinosaur. The same happened to the next to be found, Poposaurus gracilis, after its discovery in Wyoming in 1915. This specimen was subsequently described as a theropod dinosaur, a primitive stegosaurid and also an ornithopod. Only when the German palaeontologist, Friedrich von Huene, collected numerous Triassic fossils from the Santa Maria Formation of Brazil in 1928, did things begin to change. His detailed studies of the material revealed that most of it did not belong … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

The fossil forest of Curio Bay

Heather Wilson (New Zealand) Fig. 1. The location of Curio Bay. The 180 million year old fossilised forest at New Zealand’s Curio Bay is of international geological significance. When I visited the area recently, the wind was blowing a gale and there were high seas. There is a two-minute walk from the car park to a lookout and then a series of steps down to the beach. When the rocks and fossilised trees are wet, they are slippery, so you need good footwear. This is a protected area. When I visited, there was a representative from the Department of Conservation guarding the beach. There are also video cameras keeping an eye on the fossilised forest, making sure it doesn’t gradually vanish as a result of tourists and rock hounds making off with specimens. Fig. 2. View of Curio Bay. This is one of the most extensive and least disturbed examples of a Jurassic fossil forest in the world. The area within which it is found stretches for about 20km, from Curio Bay, south-west to Slope Point. When the forest was living (during the Middle Jurassic epoch), New Zealand was part of the eastern margin of the ancient super-continent known as Gondwana. North of Curio Bay, most of the country’s future land area was beneath the sea. The fossilised trees occur in green sandstones, alternating with blue shaley clays containing plant impressions. Silica has entirely replaced the woody structure of the trees and rendered them extremely resistant to erosion. Therefore, they … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Fossil from Denmark (part 2)

Niels Laurids Viby (Denmark) The first half of the Palaeocene in Northern Europe belongs, more or less, to the Danish! On 16 November 1846, Edouard Desor held a lecture in Paris with the title ‘Sur l’étage Danien, nouvel étage de la crai’ (‘On the Danien, a new stage of the Cretaceous’) – the Danien was, at that time, seen as being the final stage of the Cretaceous period. Nowadays, in most parts of the world, including most of Europe, ‘Danien’ is the recognised name for the geological age stretching from the end of the Cretaceous (somewhere between 64 and 65mya, depending on what book you read) to some five million years later. Danien deposits are widespread in Denmark, apart from in the southern part of Jutland, and even here you can find flint and blocks of chalk from hardened Danien beds on every stony beach. For fossil collectors from countries that do not have these sediments, Denmark is a good place to visit – it is virtually impossible to come home without at least some Danien fossils, although probably not a great variety unless you visit Fakse Chalk Quarry (which is discussed below). Danien chalk – a lot of different sediments: Stevns Klint The layout of the Danien is best seen at Stevns Klint on Zealand, which has some 20km of cliffs, averaging 20m in height. Fig. 1. Stevns Klint – southern end. Here, the bottoms of the cliffs are, in most places, Cretaceous, being from the very top of … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

From sea to sand – ancient marine reptiles from the deserts of Saudi Arabia

Benjamin Kear (Australia) The hot, dry deserts of modern Saudi Arabia are not renowned as a source of ancient marine reptile fossils. Indeed, only a few years ago, virtually nothing was known beyond a few unidentified scraps of bone recovered by petroleum geologists searching for oil. However, recent exploration by teams of both Saudi and international palaeontologists have led to some exciting new finds that are helping to piece together the 190 million year long story of marine reptile evolution in the Arabian Peninsula. Fig. 1. A map of the modern Arabian Peninsula (with Saudi Arabian borders) showing the extent of the Arabian Shield (lilac) and successive Mesozoic-Cainozoic sedimentary rock exposures: Late Permian to Triassic (violet); Jurassic (blue); Cretaceous (green); Cainozoic (brown). What are marine reptiles? The term ‘marine reptile’ is actually rather ambiguous and does not refer to a specific group. Rather, it applies to any wholly or partly aquatic reptile that makes, or has made, its home in the ocean. Examples of modern marine reptiles include sea turtles (chelonioids), sea snakes (related to terrestrial venomous snakes or elapids), the marine iguana (Amblyrhynchus cristatus) and the salt-water crocodile (Crocodylus porosus). The latter is typically estuarine, but commonly ventures into coastal marine areas. However, the zenith of marine reptile diversity occurred during the Mesozoic or ‘Age of Dinosaurs’, when in excess of ten major radiations, including representatives of those living today (that is, turtles, snakes, lizards and crocodiles), made the transition to life in the sea. Despite having quite different … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Fenestella and other bryozoans in the Carboniferous rocks of the British Isles

Paul D Taylor (UK) Ask a geologist to name a fossil bryozoan found in the rocks of the British Isles and the most likely answer will be Fenestella. The net-like fossils of Fenestella are especially abundant in the Carboniferous Limestone (Figs 1 and 2), although the genus, as used in its broadest sense, is also present in the Silurian, Devonian and Permian deposits of Britain. Fig. 1. Colony of Fenestella (s.l.) nodulosa from the Lower Carboniferous of Calcot Quarry, Halkyn Mountain, Flintshire. Branches forming the characteristic meshwork fan outwards from the colony origin. Fig. 2. Large colony of Fenestella (s.l.) flabellata from the Carboniferous Limestone of Fife in Scotland. Fracturing of the meshwork is evident. While Fenestella dominates almost all bryozoan assemblages found in the British Carboniferous, a variety of other bryozoans are commonly found. Some Carboniferous bryozoans inhabited reefs or mounds, others were components of non-reef marine communities where they lived together with brachiopods, crinoids and corals at a time when the British Isles was situated close to the equator. All Carboniferous bryozoans constructed immobile colonies consisting of numerous individual zooids, with crowns of tentacles used to capture tiny planktonic algae floating in the water around. Our knowledge of the diversity of Carboniferous bryozoans in the British Isles has increased enormously during the last 50 years through the studies of David E Owen, Ron Tavener-Smith, Adrian J Bancroft and Patrick N Wyse Jackson. Yet, and in common with bryozoans from other geological periods, Carboniferous bryozoans are too often perceived … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Geology Museums of Britain: Portland Museum, Dorset

Jon Trevelyan(UK) Fig. 1. A huge Titanites giganteus adorns the doorway. I visited this little museum a while ago while on a Geologists’ Association field trip. I have passed it several time and always loved the large Titanites giganteus above the door (Fig. 1) of this picturesque cottage (Fig. 2). As a result, I had always wanted to visit, but more particularly I want to see the famous fossil turtle (Fig. 3) that is exhibited there. Fig. 2. One of the two seventeenth century cottages making up the museum. Fig. 3. The lovely fossil turtle at the museum. In fact, Portland Museum is a lovely example of a local museum containing (among other things, geology (Fig. 4), in this case, tucked away in a beautiful part of the ‘island’ in two seventeenth century cottages, near Rufus Castle and the popular Church Ope Cove. Fig. 4. Some of the geological exhibits at the museum. The Isle of Portland in Dorset represents the most southerly point of the Jurassic, which is a UNESCO designated World Heritage Site and famous for its geology, fossils and geomorphology. It is joined to the mainland by the equally famous Chesil Beach but has always been regarded (not least by its inhabitants)as separate from the mainland, and this is reflected in the museum’s collection. That is, Portland Museum does not just contain geology and palaeontology; its exhibits also reflect the Isle’s history and people. Portland Museum was founded in 1930 by Dr Marie Stopes, renowned for her … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Ghughua Fossil National Park, India

Khursheed Dinshaw (India) The Ghughua Fossil National Park is located in the state of Madhya Pradesh, India and contains plant fossils that are more than 65 million years old. It covers an area of approximately 27.34ha and consists of a museum and fossil trail. The fossils inside the museum are on display in neatly arranged glass showcases. The most popular exhibit is the Eucalyptus tree fossil, which is kept on a bed of sand (Fig. 1). It was found in Ghughua and what makes it a highly coveted fossil is the belief that it originated from Gondwana (see below). Fig. 1. A Eucalyptus tree kept in the museum. The fossil trail is a walkway where visitors can see the fossils in their natural setting. Since multiple fossils were discovered at one location, they are placed on circular platforms at that spot by the side of the walkway (Fig. 2). Fig. 2. Multiple fossils found at Ghughua. It is due to the untiring efforts of Dr Dharmendra Prasad, who was the Statistical Officer of the district, that the fossils and park gained their due prominence. Fifty two years ago, S R Ingle from Science College in Jabalpur and Dr M B Bande from the Birbal Sahni Institute of Palaeosciences in Lucknow spent time studying and identifying the fossils and their contribution is significant. On 5 May 1983, Ghughua was declared a Fossil National Park and a sum of Rs 150 lacs was allocated for developing it. The fossils that can be … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Pennsylvania’s forests looked different in the Carboniferous and Early Permian

Deborah Painter (USA) A singer named Perry Como caused this article to be written. Perhaps it would be more correct to credit his statue. My friend Richard and I took a road trip in June 2018 to a conference in Cranberry Township, Pennsylvania, USA for a three-day weekend. On Sunday afternoon, we were facing a seven hour drive south back to our homes. Fortunately, the weather was sunny and mild, a good way to conclude a trip that had been plagued with thunderstorms earlier. We were both tired, but Richard allowed me to stop off Interstate 79 to Canonsburg, Pennsylvania to see a statue in honour of Perry Como, an American celebrity of the mid-twentieth century. I admit I didn’t know why I wanted to see it, since I am not especially a fan of the recording artist and television star, and neither is Richard. However, I was curious about it because I had read that it continuously plays music. I also thought Canonsburg (Fig. 1), a quick turn off the Interstate highway in Washington County, might be a good stopping place for us to find a restaurant before proceeding on the long journey back. Fig. 1. Canonsburg is an older suburb of Pittsburgh, Pennsylvania USA in Washington County. (Credits: Deborah Painter.) Perry Como’s mellow style of jazz and big band made him a recipient of a Kennedy Center Award for outstanding achievement in the performing arts. His style and choice of music was not unlike those of the even … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

In the footsteps of T-rex and other prehistoric giants: my trip to Hell Creek, the Green River Formation and the Niobrara Chalk

George Corneille (UK) It was Christmas 2005 and I received a phone call from the USA from my good friend, Terry Boudreaux. He asked if I wanted to join him and his boys, Christopher and Evan, on a trip to hunt dinosaurs in Hell Creek in South Dakota, fossil fish in Kemmerer, Wyoming and Cretaceous marine life in the chalk formations of Gove County, Kansas. Well, he didn’t have to ask twice and, in June of 2007, I arrived in Chicago to begin my 4,500 mile road trip to some of the most famous fossil sites in the world. On the morning of Sunday, 25 June 2006, we left Chicago to begin our fossil adventure. I was full of anticipation, dreaming of a finding a mosasaur or maybe a four-inch T-rex tooth (or even just a fossil fly). On the first day, we drove to Sioux Falls, South Dakota, arriving the next day in Rapid City S.D. where I had an opportunity to visit the Black Hills Institute and see their stunning collection of dinosaur fossils. I suppose the most impressive fossil was the complete Triceratops lying in situ, as he has done for the last 65 million years, and the giant skull from a Deinosuchus, the massive prehistoric crocodilian. We continued our journey and, that night, arrived in Buffalo, South Dakota where we would spend the next few days hunting dinosaurs. Fig. 1. Outside the ranch house in Buffalo, S.D.. Back row from left: Terry, Alyson, Ryan, Steve, Christopher … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

A crinoid find and a brief history of collecting these animals

Fiona Jennings (UK) I am a collector of fossil crinoids that, along with many other types of fossils, are common on the coast of North Yorkshire. The best crinoid fossil I have found so far is the large block of jumbled stems pictured. I found it at Skipsea, a few miles from Tunstall, on the Holderness coast, one November a while ago. The block measures 18 inches across, is 6.5 inches thick and has a circumference of 23 inches. I was totally surprised when I saw it resting on the mud, as I’d only been on the beach for about ten minutes. My friend Harry tells me that this block is an erratic, carried to the beach from further north, by glacier ice during the last glaciation. Fig. 1. The block. I always have fun on my fossil hunting trips, but the biggest laugh of this particular day came as I tried to get the fossil off the beach. After finally squeezing it into my husband’s rucksack, I then had the trouble of lifting the bag onto his back. Fortunately, he managed to lug my find back to the car, because it was definitely coming home with us whether he liked it or not! Fig. 2. Magnified view of the crinoid block. I find crinoid fossils fascinating, but the history of their collection interests me the most. In the past, disc-shaped segments from their stems were used to make necklaces and rosaries. As a result, they were once known as … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

A very brief Introduction to the Quaternary

By Joe Shimmin The Quaternary comprises the Pleistocene and the Holocene and is the youngest of the geological periods. It dates from approximately 1.8 million years ago right up to the present, with the large majority of this time being filled by the Pleistocene. The Holocene spans a geological ‘blink of an eye’, beginning only 10,000 years ago at the start of the present interglacial and continues today. What sets the Quaternary apart from other geological periods is a suite of high frequency climate fluctuations, with very cold stages being interspersed by warmer stages. This type of climate fluctuation is believed to have occurred at various other times in the Earth’s history, but most of the evidence for these has been wiped out over millions of years. However, the glacial/interglacial or warm/cold stages of the Quaternary have, in many cases, left us enough evidence of their existence for the Quaternary scientist to be able to attempt to reconstruct these past environments with some degree of success. Fig. 1. Glacial beds at Benacre, Suffolk Serbian mathematician, Milutin Milanković, formulated the accepted theory for why climate oscillations have occurred in this period, in the first half the twentieth century. According to ‘Milanković, Quaternary climate was, and is, influenced by three factors: Factor 1: the shape or ‘eccentricity’ of the Earth’s orbit around the sun, which varies over a cycle of approximately 100,000 years.Factor 2: The tilt or ‘obliquity, of the Earth’s axis, which varies over a cycle of approximately 41,000 years.Factor 3: … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Down and dirty at a dig: a dinophile’s dream comes true

By Elena Victory “You really should go on a dig” was the advice of a dear friend during the long, rainy winter of 2005. I was just gearing up to teach my annual, introductory paleontology class at a small college near my home outside Portland, Oregon. “Where?” I asked. “Who specialises in fanatics who read lots of dinosaur books and dream a lot, but has never dug up a real dinosaur?” She smiled and said, “I think Nate Murphy’s program would be good for you”. It unfolded from there. I emailed Nate to find out availability. He emailed back, directly I might add. And so, I found myself outside of Billings, MT en route to my first real dig. It was a beautiful landscape: a few lonely Ponderosa pines stood like silent sentinels over a grassy landscape dotted with spurges, thistles and wormwoods. Through the eyes of a botanist, it didn’t look like dinosaur country to me. That night, after a group of 35 excited diggers had made camp and their introductions, we were given a little history. The next day, we were going to dig our awls and shovels into the “Mighty Morrison”, a huge geological layer cake of shales and mudstones spanning several states and several thousand square miles. The Morrison graveyard also records a story of climate change. Early in the Jurassic period, Apatosaurus roamed on its home range encountering arid seasons part of the year and deluges the rest of the season (poor thing, I thought, … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Jurassic Gorge

By Dr Susan Parfrey About 95km south of Rolleston, in the southern part of central Queensland, Australia, is a national park that contains the Carnarvon Gorge. The gorge is over 32km in length and is formed of towering white sandstone cliffs. It has almost everything a visitor could want – beautiful scenery, wonderful Aboriginal rock paintings and a garden of moss with a magic waterfall, plus King Ferns, the largest ferns in the world. So what’s missing? Well, obviously, Jurassic dinosaurs. An impression of how these dinosaurs may have looked. © SMP. This is one of the most popular national parks in the state and has over 30,000 people visiting every year. Over the years, you would imagine every centimetre of rock has been carefully studied and, in particular, the ‘Art Gallery’ Aboriginal rock paintings, some of which date back 3,600 years. Imagine the surprise in 1992 when some tourists told the Park Ranger they thought there were bird footprints in a rock at the Art Gallery. The ranger examined the site and, sure enough, there were some marks on the rock. But were they footprints? The Park Ranger took photographs and sent them to the sloe palaeontologist at the Geological Survey of Queensland in Brisbane. Map of Australia showing the position of Brisbane and Carnarvon Gorge. Throughout my career as a geologist, I have seen every shape possible formed in rocks. Nature has an amazing ability to cut interesting shapes in natural objects. Combine this with people’s imaginations and … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Finding Ophthalmosaurus – the eye lizard

By Paul de la Salle Ophthalmosaurus – the ‘eye lizard’ – is so called because of its enormous eyes, presumably of crucial importance when diving to enormous depths in the Jurassic seas in search and pursuit of its favourite prey, the belemnite. This was a large ichthyosaur, supremely adapted to its marine environment. Some fossil collectors think it should be called ‘Ribosaurus’ on account of the number and size of its ribs that are usually broken into hundreds of pieces when found. Fig. 1. Block as found – 24 June 2007. Fig. 2. Ribs. Individual vertebrae and rib sections of this, the only ichthyosaur known from the Lower Oxford Clay, are fairly common finds. However, I was lucky enough to find a partial articulated skeleton this summer, in the drainage ditches of a Wiltshire gravel pit. Fig. 3. Concretion before cleaning. Fig. 4. Another concretion before cleaning. Recent heavy rains had washed away some of the clay from the bank exposing a large pyritic concretion packed with bones, including a humerus. When I dug into the bank, I was amazed to find both front paddles, including both humeri and about 50 paddle bones. Many of the bones were fused together in life position. Fig. 5. Front and rear flipper. Fig. 6. The left paddle. Fig. 7. Loose vertebrae. Over the next week or so, I recovered quite a bit more of the skeleton but the head had been washed away by one of the floods that had deposited the gravel … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

SEACHANGE sets sail: Science on the high seas

Jack Wilkin (UK) During April and May 2022, I had the fantastic opportunity to participate in a research expedition to the North Sea and Iceland on the RRS Discovery, as part of the SEACHANGE project. The following article is a brief description of the science that happened on the ship. What is the SEACHANGE Project? SEACHANGE is a six-year research project funded by the ERC Synergy Grant Scheme (part of the EU’s research and innovation programme, Horizon 2020). It is jointly run by the University of Exeter (UK), Johannes Gutenberg University Mainz (Germany) and the University of Copenhagen (Denmark). This is a collaborative project with scientists worldwide, from master’s students to professors working diligently to answer the question: What were the oceans like before large-scale human impact? To answer this question, we need to test the scale and rate of biodiversity loss resulting from fishing, whaling and habitat destruction over the last 2,000 years in the North Sea and around Iceland, eastern Australia and the Antarctic Peninsula. In addition, we need to find out more about the earlier transition from hunter-gatherer to farming communities in northern Europe around 6,000 years ago. However, before answering this question and starting to generate data, we first needed the raw materials. Because we were monitoring the oceans, we needed to go to the sea to gather our samples, so we need a boat … a very big boat. The RRS Discovery. The RRS Discovery (Fig. 1) is one of the most advanced research ships … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.