Book review: Mortimer Forest Geology Trail, edited by Andrew Jenkinson and illustrated by Gillian Jenkinson and John Norton

This small, yet informative, booklet takes you on a four-mile walk to 13 sites and through 15 million years of Earth history. The Mortimer Forest Trail is a geology trail in Shropshire that is famous for its outstanding fossils and varied geology. The trail mostly examines Silurian formations such as the Wenlock and Ludlow series.

Headbanging, rocking and moonwalking fossils

Mats E Eriksson (Sweden) One can never be too careful when given the opportunity to name a fossil organism that has proved to be new to science. In addition to a meticulous description and accompanying images showing the characteristic traits of the fossil, a unique and formal, Latinized scientific name must be attached to the creature. Many people, who get the chance honour an older colleague or famous palaeontologist, use the name of the discovery site or region to indicate the provenance of the fossil or, of course, christen the fossil after its characteristic looks (for example, Eriksson, 2017a). But you can also glance towards completely different areas, such as the art and music scenes. As a lifelong music fan and hobby musician (who, just like many of my peers, had aspiring yet quite ludicrous ‘rock star dreams’ in my teens) and a palaeontologist by profession, I cannot help myself but feeling blissful and delighted about the possibility of joining my two passions – ‘heavy’ music and palaeontology – in ‘unholy matrimony’. This has, among other things, led me to name some extinct polychaete annelid worms (bristle worms – the marine ‘cousins’ of earth worms and leeches) from the Silurian and Devonian periods after some of my favourite ‘metal’ musicians. These largely soft-bodied animals generally have poor preservation potential, although full body fossils are known from the fossil record. However, some representatives are equipped with resistant jaws (when preserved as microfossils they are known as scolecodonts) that, by contrast to … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Other mass extinctions

Neal Monks (UK) The extinctions at the Cretaceous-Tertiary (K/T) boundary make up what is probably the most famous geological event in popular culture. This is the point when the great reptiles that characterise the Mesozoic went extinct. Alongside the dinosaurs, the giant marine reptiles died out too, as did the pterosaurs, and a whole host of marine invertebrates, including the ammonites and belemnites. What happened? Some geologists argue the climate changed over a period of a million years or more, thanks to the massive volcanism that created the Deccan Traps in India. Others maintain that the K/T extinctions happened suddenly, pointing to evidence of a collision between the Earth and an asteroid. Perhaps there wasn’t a single cause, but rather a variety of factors: volcanism, climate change, asteroid impact, underlying changes in flora and fauna, and perhaps even variation in the output of the Sun and resulting weather patterns. That life on Earth can be wiped out this way is the stuff of disaster movies as much as TV documentaries. However, what comes as a surprise to many people is that there wasn’t just one mass extinction at the K/T boundary, but a whole series of them that can be observed throughout the fossil record. One of them, the Permo-Triassic extinctions, appear to have been even more catastrophic than the K/T extinctions, and at least three other extinction events are comparable in scale. In between these five big extinctions were lots of smaller extinctions that aren’t well studied, but had … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Graptolites of Abereiddy Bay

Dr Neale Monks (UK) Graptolites are curious fossils that are common in Lower Palaeozoic rocks where other types of fossils are lacking. The word ‘graptolite’ comes from Greek words that mean ‘writing’ (graptos) and ‘stone’ (lithos), and refer to the fact that graptolite fossils look like pencil marks on stone, partly because they’re flat and partly because of the iridescence of many specimens when freshly exposed. It is generally assumed graptolites were planktonic organisms that occupied an ecological niche like that of modern jellyfish, drifting about the oceans feeding on algae or tiny animals harvested using some sort of filter-feeding mechanism. The impetus for this article was a quick but successful trip to Abereiddy in Pembrokeshire, Wales, about 2.5km from Britain’s smallest city, St Davids (population: 1,800). I had been to Abereiddy many years before on a geological field trip with Andy Gale, who is currently professor of geology at the University of Portsmouth, but I did not have any clear memory of where the fossils were to be found. But, as it happened, this locality is one of those where the fossils are abundant and easily collected – provided you look at the right sorts of rocks. Collecting at Abereiddy Bay Abereiddy is a tiny place, but the bay has become a popular tourist attraction because of a flooded quarry known as the Blue Lagoon. Quarrying for slate ended in 1901 and the sea eventually broke through to the quarry, creating what is, in effect, a small natural harbour. … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.