Rudists: A fossil story

Jack Shimon (USA) This article is adapted from a presentation given at the Denver Gem Show, September 17, 2016 by me, Jack Shimon. When I was six and a half years old, my Grandpa took me fossil hunting in central Texas. We went to a Carboniferous Limestone quarry that he had visited earlier and was given permission to enter and collect from. This was one of my first fossil hunting trips and I really enjoyed it. The ancient reef we went to (now a quarry) had huge boulders of limestone and tube-like things in it we later to be found to be rudist bivalves. This article is all about these finds and the efforts we went to, to find out what they were. Fig 1. The author at the quarry. (Photo credit: Mike Hursey.) Fig. 2. This Google satellite image shows the reef we collected from. Two of the three lobes have been excavated for limestone. You can also see smaller pinnacle reefs marked with the short arrows. All of the reefs rise above the flat Texas landscape. (Permission from Google.com: ‘Special Use Guidelines’.)Fossils We spent a lot of time at the quarry observing the massive specimens onsite and then collected some smaller pieces to bring home and look at closer. A simple way of thinking about fossils is to consider them either as a cast or a mould. A mould is formed when an object is placed into a soft substrate and then decomposes or is washed away leaving … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

What’s so special about South Devon?

Professor John CW Cope (National Museum of Wales, Cardiff UK) Take a trip to the South Devon coast around Easter time and you are bound to come across student parties from universities engaged in fieldwork. What is it about this area that makes it so popular as a centre for this? The simple answer lies in a single word — variety. There is probably no other area in the UK where such a wide variety of rock types and ages is well-exposed in such a small geographical compass. Let’s have a look at some of the factors. The geological succession The oldest rocks exposed in South Devon are of Devonian age and, unlike many other areas of the UK, the Devonian rocks are in marine facies virtually throughout. Looking back over the history of geology, the age of these rocks had initially proved difficult to identify and it was only after Murchison had seen the marine successions in The Rhineland and Russia that he realised that these marine rocks were the equivalent of the Old Red Sandstone farther to the north. The Devonian rocks present a variety of marine facies, with the Middle Devonian limestones being of particular note. The limestones are a local development whose presence, in an otherwise deeper water succession, is due entirely to local shallowing of the water caused by thicknesses of volcanic rocks extruded along extensional fault lines as the local basins developed. This shallowing allowed reef-building organisms to flourish and the principal ones of … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Fossil crustaceans as parasites and hosts

Adiël Klompmaker (USA) Who would like to carry a parasite? I bet not many people would like to have one or more. They are nevertheless very common in humans and in other organisms, and can affect entire food webs including keystone species. They tend to be small compared to the host and the vast majority of them are soft-bodied. Despite their small size and soft appearance, they can affect the host substantially, for example, leading to a reduced growth rate and less offspring. Much of the same holds true for crustaceans – they are affected by parasites and can act as parasites themselves. For example, parasitic crustaceans are found among the isopods and copepods. Given the widespread occurrence of parasitism in and by crustaceans today, a fossil record of such parasitism may be expected. Swellings in fossil crabs and squat lobsters So what does the fossil record look like? I have been fortunate to have worked on this under-studied field of research. During my PhD research, I found various swellings in fossil crabs and squat lobsters (decapods from the superfamily Galatheoidea) during and after field work in northern Spain in reef carbonates from the mid-Cretaceous (upper Albian). They appeared to occur regularly in the back part of the carapaces of these crustaceans. Fig. 1. Bopyrid isopods from the species Orthione griffenis (large female and small male), removed from the right gill chamber of a modern mud shrimp (Upogebia pugettensis). (Photo by Stephen Ausmus, USDA Agricultural Research Service, http://www.bugwood.org.) This swelling … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Can the end-Permian mass extinction be attributed to a single, catastrophic event?

Robert Broughton (UK) The end Permian mass extinction occurred 251mya and marked the end of the Palaeozoic era. The loss of life is currently estimated to consist of 95% of the marine fauna and around 70 to 77% of the known terrestrial fauna (where the fossil record is inevitably less complete). This article will provide an overview of the many events and processes that played a part and a discussion whether they can all be attributed to a single, root cause. Reef evidence At this time, the landmass was united into the single, super-continent of Pangea, surrounded by warm shallow seas with abundant reef systems. This extensive reef fauna supported a variety of suspension feeders (for example, crinoids, rugose and tabulate corals, and so on), which were the most heavily hit by the extinction event, with all the known corals dying out. Modern scleractinian corals only appeared in the Triassic and there is a considerable gap in the coral fossil record at this time. Other reef inhabitants, such as the last phillipsid trilobites also became extinct. All these creatures were sessile or relatively immobile inhabitants of the reefs that occupied a relatively narrow zone on the continental shelf. This habitat must have been destroyed almost globally by a number of factors, but importantly, the single shelf margin around Pangea meant there was no other shallow reef environment for the fauna to migrate to. Fig. 1. Reef evidence. Tectonic activity The single continent of Pangea was always doomed to split apart. … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.