This category can only be viewed by members. To view this category, sign up by purchasing Annual subscription, 12 Month Subscription or Monthly subscription.

Salthill Quarry, Clitheroe: A resource degraded

Stephen K Donovan (The Netherlands) The Mississippian (Lower Carboniferous) is often referred to as the ‘Age of Crinoids’. Historically, the best collecting area for fossil crinoids in the Carboniferous Limestone of the British Isles has been Clitheroe, in Lancashire. The late Stanley Westhead, who lived in Clitheroe, rightly claimed that: “… nowhere else in England have Carboniferous crinoids been found in such large numbers and also in such variety of genera and species” (Westhead, 1979, p. 465). Indeed, it is probably the best area to collect fossil crinoids of any age in England. Although there may be more species known from the Silurian (Wenlock) of the Dudley area in the West Midlands, since the quarries there ceased operation in the 1920s, crinoid crowns have been difficult to find. In contrast, I have just spent an enjoyable week in August 2010 collecting thecae and other crinoid fragments at Clitheroe. There are three notable crinoid localities in the Clitheroe area, namely Bellmanpark, Coplow and Salthill quarries (Wright, 1950-1960; Donovan, 1992a). Bellmanpark (currently active) and Coplow (disused) quarries are not accessible to the public. Salthill Quarry (Grayson, 1981; Bowden et al., 1997) is a nature reserve managed by the Wildlife Trust for Lancashire, Manchester and North Merseyside. It exists around an industrial estate and is freely accessible. Fig. 1. The crinoid bank (locality 6 of Bowden et al., 1997) as it is today, largely obscured by grass. Collectors (left and middle) approximately define the exposure of bedded limestone, which extends a little way … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Fossils from the Lias of the Yorkshire Coast

Alan R Lord (Germany) Palaeontological Association Field Guide to Fossils: Number 15 As the editor of this new publication by the Palaeontological Association (see Palaeontological Association Field Guide to Fossils Number 15: Fossils from the Lias of the Yorkshire Coast), I think that it may be time to explain why it is we produce these guides and why we think it is important. In these days of emphasis on ‘impact’ of scientific publications, involving metrics relating to both authors and journals, the series Palaeontological Association Field Guide to Fossils may seem old-fashioned, even anachronistic. However, I have not spent several years of my life editing two of these volumes to agree with such a view. The Field Guides are important for several good reasons, in order of increasing importance in my opinion: 1. As a form of outreach to the public, they help the Palaeontological Association fulfil its obligations for charitable status. 2. The Field Guides do not set out to be monographic in the sense of covering all aspects and all fossil taxa of the time period or the biota in focus. Such publications are rare nowadays. However, given that the chapters aim to include as many important genera and species as possible, and the authors are all experts in their fields, the books represent important scientific overviews of their subject. 3. We, the Association, editors and authors, all hope that the Field Guides reach a wide range of readership, stimulate interest in palaeontology and fieldwork, and encourage future … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Body of a mighty giant

Matt Salusbury and Tim-Holt Wilson (UK) “The Wonder of Our Times: Being the True and Exactly Relation of the Body of a Mighty giant dig’d up at Brockford Bridge neer Ipswich in the county of Suffolk.” That’s the title of a printed pamphlet from 1651, now in the Thomason Collection of the British Library (Ref 1). It was written in the form of a letter from “I.G.” to his brother in London, updating him on “the town of his nativity” (Ipswich). It describes a skeleton found by workmen digging in the “gravelly way”. Brockford is a hamlet in the parish of Wetheringsett, located on the A140 road (grid reference TM117669) about 15 miles north of Ipswich (Figs. 1 and 2). It is not exactly “neer” (near) the town in seventeenth century terms – in those days it would have been the best part of half a day’s ride on horseback. It’s unlikely that “I.G.” travelled all the way from Ipswich to Brockford to see what the pamphlet called “The Wonder of the Age” for himself; he probably relied on descriptions he received in letters. The pamphlet refers to a John Vice as having found the bones, so the account is second-hand, at least. Fig. 1. The Brockford area shown on Hodskinson’s map of Suffolk, 1783. It is crossed in a north-south direction by a turnpike (the modern A140) and diagonally by a lane between Mendlesham and Thorndon. (Image by kind permission of David Yaxley – ‘Hodsksinson’s Map of Suffolk in … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Geology museums of Britain: The Booth Museum of Natural History, Brighton

Jon Trevelyan (UK) Fig. 1. A group of German schoolchildren enjoy a day out at the museum. Those of you with a long memory (and an admirable loyalty to Deposits magazine) may remember that, several years ago, I produced a few articles on British geology museums, including the National Stone Centre in Derbyshire and Whitby Museum (the latter jointly with Dean Lomax). I have recently been spending some time working in the seaside town of Brighton and decided to reacquaint myself with the Booth Museum of Natural History, an to write about this quaint little gem. Fig. 2. The rows of cabinets containing the Victorian taxidermy of collector, Edward Booth. I am not entirely comfortable with the rows of cabinets full of stuffed animals containing the collection of Victorian taxidermy of collector, Edward Booth (Fig. 2) after whom the museum is named, but it is not that that attracts me to the museum. Rather, it is a smallish backroom housing a collection of geology – found predominantly in Sussex, but also elsewhere in Britain and the world. Fig. 3. A large set of gypsum crystals among other mineral exhibits at the museum. While there are iguanodontid dinosaur bones from Sussex on show, there are also large mineralogical and sedimentological specimens (and apparently petrological slides in a microscopy section, which I was not aware existed). There is also material from the elephant beds beneath Brighton, with ice age mammal fossils and subfossils. Fig. 4. Echinoids: Stereocidaris sceptrifera (left), Tylocidaris clavigera (middle) … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Excursion to the South Devon coast led by Prof John CW Cope (National Museum Wales)

Mervyn Jones (UK) GA field meeting on 6 and 7 April 2019 This field meeting was the second following the publication of Prof Cope’s GA Guide No 73, Geology of the South Devon Coast (reviewed in Issue 51 of Deposits), the companion to GA Guide No 22, Geology of the Dorset Coast (reviewed in Issue 50). Our mission for the weekend was to complete our examination of the complex Devonian succession from Torbay to the western limit of Lyme Bay at Start Point and then beyond; farther into South Devon. Of great interest was the marine Devonian, first described by Adam Sedgwick, assisted by Roderick Impey Murchison, who finally realised that these facies were contemporaneous with the familiar Old Red Sandstone found north of the Bristol Channel. The area has much to offer enthusiasts of structural geology because the Devonian strata have been tectonised by the closure of the Rheic Ocean during the Variscan orogeny. The story has only been unravelled in the last 50 years as follows. First, sediments filled a series of basins caused by crustal extension; the basement beneath the Devonian rocks may well be a massif of Precambrian mica-schist, inferred from the copious amounts of mica and the occasional xenolith in the rocks above. Then, from the Early Carboniferous, continental collision caused a series of major thrust structures and metamorphic zones that progressively moved northward. As a consequence, any Carboniferous rocks that were deposited in the Torbay area were rapidly stripped off. The marine Devonian was … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Crinoids at Hartington

Stephen K Donovan (The Netherlands) Much of the secondary railway route in Derbyshire, from Buxton south to Ashbourne, was closed in the 1950s and 1960s. Today, only the northern section is still in use as a railway, providing a route for major limestone quarry traffic (Roberts and Emerson, 2018). But the remainder of the line, from about 2.25km north of the closed Hurdlow station (Rimmer, 1998, p. 102), all the way to Ashbourne – a distance of about 27.5km – is now open as a cycle path called the Tissington Trail. This is part of the High Peak Trail north of High Peak Junction, which is south of Parsley Hay, and provides excellent access. For a map, see http://www.peakdistrict.gov.uk/__data/assets/pdf_file/0009/90486/hptisstrails.pdf. The interest of this route for the geologist is that most of it is through the Carboniferous limestones (Mississippian) of the Derbyshire plateau. The beauty of the scenery combines with the accessibility of exposures in railway cuttings to provide much of interest to the geologist on foot or bicycle. The northern part of the route, from south of the site of Hurdlow station, through Parsley Hay (with cycle hire and a cafe) to Hartington, is described in a brief field guide by Simpson (1982, pp. 102-107). My interest in these limestones is for their fossil crinoids. These are commonly difficult to see in the massive beds of limestone, which, over many years, have developed a surface patina that conceals internal features such as fossils. As this is a national park, there … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Wealden insects: An artist’s update (Part 4)

Biddy and Ed Jarzembowski (UK) An ‘artist’s impression’ of Wealden insects, inspired by the original work of Neil Watson, appeared in a three-part mini-series in Deposits issues 47 to 49. Since then, the discovery of a number of species new to science (belonging to diverse groups) has meant that an update was needed. Here are some completely new watercolours by Biddy, including the first true bug (heteropteran) from the Wealden, and the first Wealden earwig (dermapteran). Insects are arthropods and an accompanying Wealden crustacean is added this time. Photographs of actual fossils found in the Weald Clay Formation of Lower Cretaceous (Hauterivian and Barremian) age are provided too. We are indebted to Fred Clouter, Terry Keenan, Tony Mitchell and Pete Austen (UK) for help with these images. As before, Ed has supplied some explanatory notes to accompany the pictures, with more on the way. We have incorporated some new ideas on established species, such as different interpretations of the fossil lifestyle in the case of the ‘moss’ bug. Wealden insects are often disarticulated (due to transport in water). Where intact relatives are known from other contemporary deposits (especially Asia and Spain), these have been referred to, as well as recent representatives. While we can now recognise the commoner insect groups from the late age of the dinosaurs, continuing fieldwork shows that others remain to be unearthed. The artist’s job is ongoing, like that of the specialist and collector. We shall continue to periodically share the finds with you as a … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Duria Antiquior: A nineteenth-century forerunner of palaeoart

Steven Wade Veatch (USA) Fig. 1. Duria Antiquior. A watercolour painted in 1830 by Henry De la Beche, who conjured up a vivid picture of an ancient world. It is now in the National Museum of Wales and another copy can be seen at the Sedgwick Museum in Cambridge. (Image is public domain.) In a breath of inspiration in 1830, English geologist, Henry De la Beche (1796–1855), while exploring new intellectual territories in the emerging fields of palaeontology, painted Duria Antiquior (meaning “a more ancient Dorset”), a representation of a prehistoric Dorset coast. De la Beche’s work was ground breaking – his artwork combined science and art in the first artistic rendering of a paleontological scene, while laying bare the secrets of the past. Before 1830, art depicting the prehistoric world did not exist and these realms were unknown to the public (Porter, n.d.). While it is true that scientists made drawings of fossil animals and exchanged them with each other in private letters, the public had no concept of how prehistoric animals looked. This painting opened people’s imagination to new visions, thoughts and beliefs. De la Beche’s painting also laid the foundation for a new genre that would later be known as palaeoart, an artistic genre that reconstructs prehistoric life according to the fossil record, scientific understanding and artistic imagination. De la Bache’s brushstrokes of prehistoric time included (literally) all the information known at that time about ancient life and soon became the first teaching graphic used in the … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Disappearing Dunwich

Roy Bullard (UK) There are many places around the coastline of the British Isles that are quite simply majestic and, in their own unique ways, full of magic. Dunwich lies between the lovely town of Southwold and the village of Sizewell on the East Coast of England in the county of Suffolk. It is a coastal area that is easy to include in this category and is a place that I love to visit. However, as you sit there on the shore watching the cliffs and the North Sea, it is hard to imagine that so much has been lost since the time when Dunwich was once a large, thriving community. Fig. 1. Sandy cliffs of Dunwich. My aim in this short article is to take a look at the present state of this coastline and compare it with the coast as it once was before huge amounts of coastal erosion had taken place. In addition, I will take a look at the area’s history and mention, in passing, one of its well-worked, mythical tales. A steeply sloping shingle beach now lies in front of the cliffs at Dunwich. These cliffs have changed a lot over time but, over the past few years, erosion has decreased substantially. The cliffs today are overgrown and this indicates a significant slowdown in the rate of erosion. However, with the ongoing threat of climate change and rising sea levels, the local residents and council have joined together to act now to protect the northern … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Book review: Geology of the South Devon Coast from the Dorset County boundary to the Brixham area: Geologists’ Association Guide No 73, by John CW Cope

Jon Trevelyan (UK) This is the second Geologists’ Association (GA) guide by Professor John Cope to be published in the last two years. The first was the second edition of his excellent Dorset guide, which was reviewed in the last issue of Deposits. And, on the grounds that “if it … Read More

Collecting sharks’ teeth at Herne Bay, Kent

Les Lanham (UK) Just to the east of Herne Bay in Kent, on the way to Reculver at Beltinge, there is a small area on the foreshore where fossils of shark and other fish remains can be found on a good low tide. As this is a beach location, success will depend on good, local conditions but, if favourable, a good number of fossil teeth can be found. In fact, Beltinge is one of the best areas in Britain to collect such teeth and it is not unusual to find 20 to 30 persons on the beach on very low tides. Even so, everybody there could end up with a good haul of material by the end of the day. Fig. 1. Four keen geological groups meet for the annual extreme low tide event. I have set out directions at the end of this article detailing where to start your day. From this starting point, go as far out as the tide will let you and shark teeth can be found. Indeed, the chances of finding teeth improve the further out the tide goes. Broadly speaking, the collecting area is in the section of beach between the groynes either side of the concrete steps. Here, when the tide has gone out quite a distance, there appears to be a “stream” running out to sea. This is the junction between the clay beds to the west and the shingle to the east. Fig. 2. Thanet Beds exposed east of Herne Bay. … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Stop the press: The Jurassic Coast starts in the Permian

Mervyn Jones (UK) This Geologists’ Association field meeting followed the publication of Professor John Cope’s Geologists’ Association (GA) Guide No 73, Geology of the South Devon Coast. It is also the companion to GA Guide No 22, Geology of the Dorset Coast. John retired in 2003 after lecturing at Swansea and Cardiff universities. Since then, he has been an Honorary Research Fellow at the National Museum Wales in Cardiff, and has a wide field experience in the UK and Europe, with publications covering many fossil groups over a wide stratigraphical range. Most recently he has been working on redrawing the geological map of South Wales, the subject of an upcoming GA lecture. And, each year, for the past six years, he has provided weekend geological trips to the West Country. Fig. 1. Prof Cope demonstrates bedding and cleavage. We met up at Meadfoot Strand to the east of Torquay Harbour. Our mission for the weekend was to examine the complex Devonian succession in the Torbay area and its unconformable relationship to the Permo-Triassic cover. Of great interest was the marine Devonian, first described by Adam Sedgwick, assisted by Roderick Impey Murchison, who finally realised that these facies were contemporaneous with the familiar Old Red Sandstone found north of the Bristol Channel. Since then, the Devonian Stages have been named after rocks in the Czech Republic, Germany and Belgium. The base of the Devonian was the first ‘Global Boundary Stratotype Section and Point’ (GSSP), defined by graptolite zones at Klonk, in … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Bryozoans in the English Chalk

Dr Paul D Taylor (UK) We are very fortunate in Britain to host one of the most remarkable deposits in the entire geological record, the Chalk. The Late Cretaceous Chalk (with a capital ‘C’) is an extremely pure limestone, famous for the White Cliffs of Dover and responsible for the landscape of rolling hills and dry valleys, forming the ‘downs’ and ‘wolds’ that stretch through England from Devon in the southwest, to Yorkshire in the northeast. The economic importance of the Chalk to the early human inhabitants of Britain was enormous because the flints contained within it could be fashioned into axe heads and hard cutting tools. Why is the Chalk so special geologically? It is a rare example of a pelagic sediment – an open ocean sediment – that was deposited over the continental shelf. This occurred at a time when global sea-level was high and the supply of terrigenous clastic sediment into the sea was minimal. The Chalk is an oceanic ooze composed mainly of the disaggregated plates – coccoliths – of coccolithophores, planktonic microalgae with exquisitely engineered skeletons of calcite. Unfathomable numbers of coccolithophores sank to the seabed over a period of some 35 million years to produce the thick accumulation of Chalk that today extends over northern Europe and into western Asia. The Chalk is a favourite hunting ground for fossil collectors, yielding beautifully preserved specimens, especially of echinoids. But closer inspection of the Chalk shows that the dominant macrofossils are often bryozoans. These colony-forming invertebrates … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Whitby Jet and the Toarcian Oceanic Anoxic Event

Arthur Speed (UK) One hundred and eighty million years ago in the Toarcian Stage of the Lower Jurassic Period, the Earth was very different from the world we know today. The continents were all clumped together in a supercontinent called Pangaea, which was just beginning to split apart. Sea level was approximately 100m higher than at present, such that much of Britain (including Yorkshire) lay beneath shallow seas. At this time, the Earth’s oceans were depleted in dissolved oxygen. The chain of events that caused this are complex, but can be traced back to a major volcanic event (Fig. 1). The eruption of the Karoo-Ferrar Large Igneous Province (LIP) spewed lava over what is now southern Africa and released vast amounts of carbon dioxide into the atmosphere. Just as happens now, the carbon dioxide resulted in global warming, which, in turn, had several effects on the oceans: Fig. 1. Volcanism during the eruption of the Karoo-Ferrar LIP may have triggered the Toarcian Oceanic Anoxic Event (Ulrich, 1983). Seawater became deficient in dissolved oxygen, because oxygen solubility decreases with increased temperature.Plankton thrived as a result of the warmer temperatures and increased nutrient supply, using up even more dissolved oxygen.Oceanic circulation was decreased, reducing the supply of cold oxygenated water to the oceanic basins.Warmer water released the green-house gas methane from the ocean floor, further accelerating global warming.The result was the formation of a layer of water that was deficient in oxygen throughout the Earth’s oceans. Its existence was first postulated in … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Daily lives of fossil reptiles

Robert Coram (UK) The Mesozoic and Cenozoic deposits of Southern England have long been a rich source of fossil reptiles. Past finds of great historical importance include some of the earliest known examples of dinosaurs, ichthyosaurs and pterosaurs. Fossil material, including new species, continues to be revealed, mainly at rapidly eroding coastal sites. All these reptiles would have been active participants in their local ecosystems, whether on land or in the sea. Much information about the roles they played and their interactions with other organisms can be gleaned from their skeletal anatomy and from comparison with living relatives such as crocodiles. What this article is concerned with, however, is evidence of specific incidents in the lives, and deaths, of individual reptiles; tiny snapshots of opportunities, mishaps and the daily drudge of staying alive. These add more detail and colour to our knowledge of the lifestyles of these long-vanished animals. This evidence will be provided by four selected terrestrial and marine deposits from southern England, spanning the last quarter of a billion years of Earth history (Fig. 1). Fig. 1. Geological map showing locations of deposits discussed in the text. (1) Triassic Otter Sandstone of South Devon; (2) Jurassic Lower Lias of the Somerset (a) and Dorset (b) coasts; (3) Cretaceous Wealden beds of the Isle of Wight (IOW on map); and (4) Paleogene Hamstead beds of the Isle of Wight. Trace fossils in a desert world – the Triassic Otter Sandstone Rocks dating from the Triassic period, laid down between … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Fulletby brickyard: A classic locality in the Upper Jurassic Kimmeridge Clay of Lincolnshire

John P Green (UK) The Upper Jurassic Kimmeridge Clay Formation in Lincolnshire crops out along the western edge of the Lincolnshire Wolds scarp (Swinnerton and Kent, 1981) and many years ago was formerly exposed in many small workings that exploited the Lower and Upper Kimmeridge Clay Formation for brickmaking. The once famous brick pits at Market Rasen (TF120888) and at Stickney near Boston (TF342570), both richly fossiliferous and the source of many historic museum specimens (in particular, ammonites and marine reptiles) have long since closed and the sections are no longer accessible. Fig. 1. Saurian vertebra (crocodilian or possible plesiosaur), discovered on the reverse of a Pectinatites ammonite. Nevertheless, I have located another former, now largely overgrown brickyard, near the village of Fulletby (TF298734), situated just under five kilometres north of Horncastle. Whilst largely overgrown, small exposures remain of the Upper Jurassic Kimmeridge Clay Formation. The Palaeontographical Society lists the locality of Fulletby brickyard in its 1954 publication, Directory of British Fossiliferous Localities. It identifies the exposures present as belonging to the ammonite zone of Pectinatites wheatleyensis, and it was indeed thanks to this publication that I was able to discover this locality. The locality is also briefly discussed in Swinnerton and Kent (1981). The exposures that remain are intermittent and scattered, but shallow excavations made by me have revealed a sequence of richly fossiliferous mudrocks, which has allowed a rare opportunity to inspect and collect specimens from this rarely exposed horizon at this little known geological locality in Lincolnshire. … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Boxstones: In search of Miocene Suffolk

Tim Holt-Wilson (UK) The date is 24 May 2014 and I am browsing across East Lane Beach at Bawdsey in southeast Suffolk. A brown lump of sandstone with a white fossil shell impression catches my eye. A boxstone. This is the first one I have ever found with a fossil in it. Looking closely, I see that the sea has abraded the shell’s outlines, although the margins have survived better than the rest, so it should be possible to identify the specimen (Fig. 1). Fig. 1. Boxstone, found 24 May 2014. Boxstones are fragments of a vanished world. They are all that remains of a lost geological stratum in Suffolk called the ‘Trimley Sands’ (Balson, 1990), although deposits of similar age are still present across the sea in Belgium and other parts of Europe. Boxstones are lumps or concretions of brown sandstone, which may contain shell fossils and – if you are extremely lucky – bones and teeth. They are beach-rolled and rounded, and typically measure between 5 and 15cm in diameter. The sand is mostly quartzose, with a rich assemblage of secondary minerals, and is cemented with carbonate-fluorapatite (a phosphate mineral) and calcite (Mathers and Smith, 2002). Boxstones can be found scattered sparsely across the shingle beaches at Bawdsey and Felixstowe Ferry (Fig. 2), and in situ as a common component of the basement beds (nodule beds) at the base of the Coralline Crag and Red Crag formations of southeast Suffolk (Fig. 3). They are eroding out of the … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Book review: Trilobites of the British Isles, by Dr Robert Kennedy and Sinclair Stammers

I’ve been waiting for a book like this for a very long time and am delighted that a publication of this quality has now arrived. New books covering British palaeontology are always welcomed by this magazine and we published an article a while ago by the founder of the publisher of this book – David Penney – explaining the need for such guides.

Saltwick Bay, North Yorkshire

Emily Swaby (UK) Saltwick Bay is located along the Yorkshire Coast, between Whitby and Robin Hood’s Bay, and can be accessed from the Cleveland Way, which passes the spectacular Whitby Abbey. The geology of the area is predominantly Jurassic in age, with the site often being described as a ‘fossil treasure trove’. The bay yields a wide variety of specimens, including common ammonites and belemnites to rarer finds such as marine reptiles, Whitby Jet and even dinosaur footprints. Even though Saltwick Bay is close to Whitby, it is still a very productive locality and you never leave empty handed. In fact, it is a good location for families and beginners. The walk to Saltwick Bay from Whitby itself is approximately 2.4km and provides many picturesque views of the abbey, the harbour entrance and the remarkable coastline. The steps leading down to the beach are located just past Whitby Holiday Park, but can sometimes be slippery during winter months. It is also recommended that you check tide times for the area before arriving, as high tide can limit the extent of accessibility and could potentially cut you off. Fig. 1. The steps descending down the cliff to the bay. Once you have made your way down the steps, fossils can be found immediately among the scree or in the shingle. However, it is advisable stay away from the base of the cliffs, as rock falls are common, with loose fragments of shale constantly falling down. Fig. 2. The Nab is a … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Finders, keepers: The lost world of some Isle of Wight geological heroes

Martin Simpson (UK) There is a growing misconception that most of the earliest important fossil discoveries were made by a select few famous geologists – established names, who were supposed to have ‘found’ everything in their collections. In reality, however, the true ‘discoverers’ of the original specimens were an often unknown or forgotten assortment of amateurs, labourers, beach-combers, longshoremen or quarrymen: opportunists, who were finding ‘new’ material with surprising regularity. These people not only had local knowledge, but also had the distinct advantage of being in the right place at the right time, thanks to the hours they devoted to searching. On the other hand, the early geological pioneers were fervently adding to their private museum cabinets by whatever means possible. As news of major finds of unusual fossils came to their attention, perhaps by way of the reports in some of the provincial broadsheets mentioned later, the more diligent and successful collectors (the acquirers) put their money where their mouths were and purchased directly from the sources (the finders). Eventually some of this material found its way to the academics and their institutional museums (the keepers). In the case of the Isle of Wight – that classic locality for Cretaceous and Palaeogene fossils – the earliest and most important historical discoveries have been attributed to a small group of generalised geologists. These include William Buckland, Adam Sedgwick, William Fitton, Edward Forbes and the surgeon, Gideon Mantell between the 1820s and the 1850s; and later to a whole host of … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Carbonate platforms and coral reefs: The Coralline Oolite of the Yorkshire Upper Jurassic – a prime source of palaeontological information

Keith Eastwood (UK) The Malton Oolite Member of the Coralline Oolite Formation (Corallian Group), as exposed in the Betton Farm South Quarry (TA00158555) at East Ayton, near Scarborough (Fig. 1), provides a wealth of fascinating palaeontological and sedimentological information. Examination of outcrops within this small quarry enables the geologist to reconstruct the palaeoenvironment of deposition of the Betton Farm Coral Bed, a localised system of patch, ribbon and framework reefs that developed during the Upper Jurassic. Fig. 1. Locality map of the Betton Farm and Spikers Hill quarries. Geological outcrops from BGS Sheet 54 (Scarborough) (1998), (Wright, 2001, p.157, fig.4.20). Total image © Joint National Conservation Committee; geological outcrop map – British Geological Survey © NERC. Redrawn and reproduced with permission. The lithology and textural characteristics of the Malton Oolite Member provide a sedimentological basis for the interpretation, but the fossil content adds definitive ecological and climatic insights. The Malton Oolite is the upper of two oolite members in the Coralline Oolite Formation (Fig. 2). The lower one, the Hambleton Oolite Member, is not seen in the Betton Farm Quarries (which consist of two quarries: Betton Farm North Quarry and Betton Farm South Quarry, north and south of the A170, respectively) but is fully exposed in the Spikers Hill Quarry (SE 980863) just 3km to the WNW (Fig. 1). This location is important in providing a regional depositional context for the Betton Farm deposits, even though the upper surface of the intervening Middle Calcareous Grit Member is a minor unconformity. … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

One way to ‘collect’ a massive specimen: Simple photogrammetry in the field using a mobile phone

Nigel Larkin and Steven Dey (UK) Inspired by the excellent series of articles by Trevor Watts discussing the types of Mid-Jurassic dinosaur footprints to be found along the Whitby coast (see The dinosaur footprints of Whitby: Part 1, for Part 1 – links to the other parts can be found at the end of that part), when recently working in the area I (NL) made sure that I would have the time to walk the beaches from Saltwick Bay to Whitby. I also timed my work to make sure I could make use of the low tides early in the morning at first light. As well as the usual ammonites, belemnites and plant fossils, I found a handful of single footprint casts (most too heavy to attempt to move) and some very nice fallen slabs of claw marks and partial trackways – also mostly too big to move. One slab in particular stood out among the others at the bottom of the Ironstone Ramp in Long Bight (Figs. 1 and 2) – a ‘double trackway’ from what look like two quite different beasts walking in parallel – although they were possibly formed at different times. In the form of raised footprint casts rather than actual indented footprints, the specimen included five good prints in the left track and four, possibly five prints, on the right track – so each track contained a ‘full set’. Although the tracks look superficially quite different from one another, both appear to be attributable to … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Urban geology: The Worsley Park wall game, Manchester

Stephen K Donovan (The Netherlands) Wall games are a very geological form of light entertainment and education. I certainly have amused myself by identifying rocks and their features in walls since my days as an undergraduate and before. I was introduced to the name for the wall game (obvious, I know) by Eric Robinson (1996, 1997). Eric’s examples inspired me to devise my own version of a wall game in far-flung Jamaica. At the time, I was a member of the teaching staff in geology at the University of the West Indies in Mona, Kingston. Each semester, we took the first year classes for three one-day field excursions. As cash was getting ever tighter. I hit upon the money-saving idea of running one of the first trips on campus where there were various ‘urban geological’ features worthy of note. One of these was the stone base of a ruined building that had survived from Mona’s days as a sugar plantation. The rocks in the base were a marvellous mixture of blocks and rounded boulders, presumably collected from the bed of the nearby Hope River, which drains the mountainous country to the east of the university. This trip worked well and, after a few years, the late Trevor Jackson and I published a field guide based on my excursion (Donovan and Jackson, 2000). The primary criterion for a geologically interesting and educational wall game is a good variety of rocks. The Mona wall game was most satisfactory in this respect, with … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.