Disappearing Dunwich

Roy Bullard (UK) There are many places around the coastline of the British Isles that are quite simply majestic and, in their own unique ways, full of magic. Dunwich lies between the lovely town of Southwold and the village of Sizewell on the East Coast of England in the county of Suffolk. It is a coastal area that is easy to include in this category and is a place that I love to visit. However, as you sit there on the shore watching the cliffs and the North Sea, it is hard to imagine that so much has been lost since the time when Dunwich was once a large, thriving community. Fig. 1. Sandy cliffs of Dunwich. My aim in this short article is to take a look at the present state of this coastline and compare it with the coast as it once was before huge amounts of coastal erosion had taken place. In addition, I will take a look at the area’s history and mention, in passing, one of its well-worked, mythical tales. A steeply sloping shingle beach now lies in front of the cliffs at Dunwich. These cliffs have changed a lot over time but, over the past few years, erosion has decreased substantially. The cliffs today are overgrown and this indicates a significant slowdown in the rate of erosion. However, with the ongoing threat of climate change and rising sea levels, the local residents and council have joined together to act now to protect the northern … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Extinction of the mammoth and the Clathrate Gun

Joanne Ballard and André Bijkerk (USA) In this article, we will argue that the extinction of megafauna on the mammoth steppes of the Northern Hemisphere may ultimately have been caused by the release of massive quantities of methane in the North Atlantic Ocean at the Amazon Fan near the Brazilian coast and also from the Ormen Lange gas field off the coast of Norway. We will suggest that these events caused significant changes in the flow of water at the surface of the ocean that, in turn, led to very rapid changes in the levels of rainfall. Scientists have already recognized that increased precipitation gave rise to changes to ecosystems (or, more precisely, to biotopes) that destroyed the mammoth steppe. However, much of the evidence we will use in this article to support our argument has been used to support other sorts of explanation for the extinction. Therefore, this primary evidence now appears to be in need of revision. Introduction About 11,000 years ago, all of the remaining herds of mammoths suddenly disappeared. During the Pleistocene, these mammoths once thrived on a vast, megafauna steppe stretching across the Northern Hemisphere. It may have resembled the African steppes of today with lions, hyenas and several species of large grazers being present. However, the debate about the cause(s) of the extinction continues. In North America, things appear to be simple – the appearance of early humans on that continent seems to coincide with the downfall of the megafauna. However, there are also … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Mysteries of time: A quest for the age of the Earth

David Alexander Gardiner (UK) The question of the age of the Earth and its former inhabitants is one of great interest to us all. Most are aware that the Earth is understood today to be approximately 4.6 billion years in age, but what is the story of the momentous quest – to unravel the mystery of time? Many early speculations as to the age of the universe abounded in ancient and medieval times. We are all familiar with the literalist understanding of the Old Testament, from which Archbishop Ussher famously calculated a 4004 BC date for the beginnings of the Earth. Yet, this was one of the shortest chronologies in existence: the Babylonians spoke of many hundreds of thousands; the Egyptians of many tens of thousands; and the Hindus many billions of years in their cosmological speculations of the past. However, all these early traditions were not scientific in basis. Rather, they were religious or philosophical and not based upon experimentation and observation. It would not be until after the Renaissance that people started employing scientific methodologies to unravel the mystery. Various early scholars speculated upon the Earth’s geological history, including Leonardo da Vinci, the universal genius. Leonardo noted that fossils had once been actual living creatures and that the ocean must have once covered the land. As regards the age of the world, however, few people dared to challenge the conventional wisdom based upon the Genesis narrative – one wonders what da Vinci’s own view might have been. However, … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Rocks in Roslin Glen: A record of a swampy past

Mark Wilkinson and Claire Jellema (UK) Midlothian is an area of central Scotland that lies to the west of Edinburgh and is an area with strong geological connections due to a history of mining for both coal and oil shale. As a part of the annual Midlothian Science Festival (http://midlothiansciencefestival.com/), the School of GeoSciences at the University of Edinburgh offered a walk to look at some local geology and a talk about climate change research on the Greenland icecap. In addition, a ‘Dino and Rocks Day’ was attended by 380 people, proof (as if it were needed) that dinosaurs continue to fascinate the general public. The Edinburgh Geological Society also contributed with a session about Midlothian Fossils and a local historian talked about the history of coal mining in the area. The geology walk visited local exposures, in this case Carboniferous sediments including what may be the best exposed fluvial sediments in the area. The walk was advertised as “Rocks in Roslin Glen: a Record of a Swampy Past” and all 25 spaces were quickly booked. The location was Roslin Glen, which may sound familiar if you’ve seen the film, The Da Vinci Code, based on the novel by Dan Brown. We have not misspelled the name of the glen incidentally. For some reason, Rosslyn Chapel lies on the edge of Roslin Glen and the country park of the same spelling. The glen itself is a steep-sided valley of around 20m in depth, which carries the River North Esk roughly … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Whitby Jet and the Toarcian Oceanic Anoxic Event

Arthur Speed (UK) One hundred and eighty million years ago in the Toarcian Stage of the Lower Jurassic Period, the Earth was very different from the world we know today. The continents were all clumped together in a supercontinent called Pangaea, which was just beginning to split apart. Sea level was approximately 100m higher than at present, such that much of Britain (including Yorkshire) lay beneath shallow seas. At this time, the Earth’s oceans were depleted in dissolved oxygen. The chain of events that caused this are complex, but can be traced back to a major volcanic event (Fig. 1). The eruption of the Karoo-Ferrar Large Igneous Province (LIP) spewed lava over what is now southern Africa and released vast amounts of carbon dioxide into the atmosphere. Just as happens now, the carbon dioxide resulted in global warming, which, in turn, had several effects on the oceans: Fig. 1. Volcanism during the eruption of the Karoo-Ferrar LIP may have triggered the Toarcian Oceanic Anoxic Event (Ulrich, 1983). Seawater became deficient in dissolved oxygen, because oxygen solubility decreases with increased temperature.Plankton thrived as a result of the warmer temperatures and increased nutrient supply, using up even more dissolved oxygen.Oceanic circulation was decreased, reducing the supply of cold oxygenated water to the oceanic basins.Warmer water released the green-house gas methane from the ocean floor, further accelerating global warming.The result was the formation of a layer of water that was deficient in oxygen throughout the Earth’s oceans. Its existence was first postulated in … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Carbon Capture and Storage (CCS): Using geology to fight climate change

Mark Wilkinson (UK) Practically everyone has an opinion on climate change by now, although for the vast majority of scientists, the weight of evidence is overwhelming – emissions of carbon dioxide and other greenhouse gases are causing climate change, sometimes referred to as global warming. One possible technology for fighting climate change is Carbon Capture and Storage (CCS) in which geology plays an important role. In fact, future generations of geologists may be employed searching for CO2 storage sites in the subsurface, rather than for the more traditional search for oil and gas. The aim of CCS is simple – to allow the continuing use of fossil fuels while reducing the emissions of greenhouse gases into the atmosphere. In the long term, the burning of fossil fuels will probably cease, but until we can rely on renewable sources of energy, we are stuck with these fuels as a cheap and reliable energy source. CO2 is emitted during many activities, including driving cars and heating homes, but the largest single sources are fossil fuel power plants, which generate electricity, followed by industries, such as steel works and cement plants. It is these that most research has been focussed on. And, in principle, the technology is simple – capture the CO2 from a source (such as a power plant; Fig. 1) before it gets into the atmosphere, then transport it to a suitable storage site and inject it into the ground where it will remain for tens of thousands of years. Fig. … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Warming medieval climate supports a revolution in agriculture

Steven Wade Veatch and Cheryl Bibeau (USA) In the light of our current worries about climate change and global warming, this is the first a series of articles for Deposits that covers significant climate changes that have occurred in the geological past and times when the earth’s climate was hugely different from what we know today. However, this first one covers a slightly more recent event – the Medieval Warm period. The twenty-first century has had some of the hottest temperatures on record, but there was another period that was just as warm or warmer. The Medieval Warm Period (approximately 900–1300 AD), refers to the time when temperatures in Europe and nearby regions of the North Atlantic are thought to have been similar to, or in some places exceeded, temperatures of the late twentieth century. Researchers believe changes in the circulation of the Atlantic Ocean brought warmer waters to the North Atlantic and neighbouring regions, causing warming temperatures. The Medieval Warm Period was followed by the Little Ice Age (approximately 1300-1850 AD), a period of cooling that brought colder winters and advancing glaciers to parts of Europe and North America that lasted well into the nineteenth century. Scientists have evidence of this unusual warming period through indirect estimates of temperatures based on climate indicators that include tree rings, Greenland ice cores, ocean sediments and, in certain regions, written evidence of crop yields. There are even recorded dates when leaves come out and when flowers bloom in the spring. Records show … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Alternative view on climate change

Joe Shimmin (UK) Before you start shouting at your magazine, don’t worry, you’re not going to read that I think climate change isn’t happening or that human beings aren’t contributing to it. However, I am going to try to show that the version of climate change that we are always being shown may not be all that we should be thinking about. If you look at the timescale over which human-influenced climate change has been happening – and compare it with geological time – it is such a tiny period. However, people do not live over geological time periods, so it is natural that we concentrate on the present, with little regard for the past. In fact, with today’s human influenced climate change taking up all of the limelight, anyone would think that climate change was solely a human invention and that before the industrial revolution, the climate had been stable. But this is not the case. Fig. 1. A Map of Europe during the last glacial maximum. Blue areas are covered by ice. Green areas are land. White shows oceans and seas. In the event of a glaciation, could the influx of people migrating from the north be mitigated by the growth of the land masses due to a drop in sea level? Picture credit: Kentynet. A quick glance at Figs. 2 and 3 shows massive changes in average global temperature across the millions of years of geological time. The y axis of the graph shows change in average … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

History shows current climate change is normal

Tim Ball (Canada) Those who I refer to as ‘the new deniers’ keep trying to repair the infamous climate “hockey stick”. This is a term coined for a chart of temperature variation over the last 1,000 years, which suggests a recent sharp rise in temperature caused by human activities. The chart is relatively flat from the period AD 1000 to 1900, indicating that temperatures were relatively stable for this period of time. The flat part forms the stick’s ‘shaft’. However, after 1900, temperatures appear to shoot up, forming the hockey stick’s ‘blade’. Those who support the hockey stick focus on the blade, but it was not the major issue originally. The bulwark claim of the anthropogenic global warm (AGW) hypothesis and the objective of the stick are that current global annual average temperatures are the warmest ever. This meant that the upturn of the blade in the twentieth century was only relevant if it was higher and steeper than any previous record. Earlier warm periods were not a threat in the first reports of the Intergovernmental Panel on Climate Change (IPCC). Their mandate required that they only look at human causes, which they interpreted to mean the industrial period. However, as experts who were denied participation in the IPCC process began to examine what was said, they identified earlier warmer periods, especially the Medieval Warm Period (MWP) dating from 900AD to 1300AD, and more rapid temperature increases. Fig. 1. Temperatures for Europe plotted against the 20th century average. (Source: Based … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.