Shining hill in the Arizona desert

Deborah Painter (USA) In the area east of the small community of Bagdad and on the northeast edge of the Arrastra Mountain Wilderness of central Arizona in the USA, my friends, Terril, Yvette and David, stood with me at the base of a vision in the desert of a rockhound’s dream. This was a colourful, irregularly shaped hill, standing alone in the arid wildlands, its bright whites, reds and greens standing out against a blue and white March sky. The entire hill seemed composed entirely of loose stones of quartz, caliche (a mineral deposit of gravel, sand and nitrates found in dry areas of the USA), basalt, travertine, green quartzite, tuff and gabbro. One whole side of the hill was white from quartz. We had attempted to climb this amazing thing. But, like wonderful things in a dream, most of it eluded us. We could climb but a metre or so, before we slid back down, unable to secure a foothold. However, the four of us collected about a bucket full of the rocks on this Bureau of Land Management land. Fig. 1. Our eyes were transfixed by a shining green, brown, red and white hill (a volcanic neck), standing alone in the Central Highlands of Arizona. The side facing east (to the right in this photograph) was white from quartz. (Credits: Deborah Painter.) Just across the roadway to the south, we had hiked a short distance across an arroyo (a Spanish word for a dry creek or stream bed). … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

La Gomera: A short geological guide

Ken Madrell (UK) The island of La Gomera has an area of 370km2, it is 25km in diameter, has a maximum altitude of 1,487m (Alto Garajonay) and is situated approximately 40km west of Tenerife. Unlike the other Canary Islands, La Gomera has experienced a long and continuing eruptive break and is in a ‘postshield erosional stage’. Carracedo and Troll (2016) describe this as the stage when active volcanism has ceased, and erosive and denudational landforms are predominant (p. 39). The submarine base of the island shows that it rests on a shallower ocean bed than the surrounding islands. The emerged land mass is semi-circular in shape, with a radial drainage pattern from its centre near Alto de Garajonay. The dating of the island has proved problematic, as some of the earlier measurements placing its age between 15 Ma and 19 Ma have since proved to be inaccurate. More reliable estimates now put its age at between 10 and 11 Ma. Fig. 1. Roque Argando viewed from Lomo de la Mulata. La Gomera’s general stratigraphy comprises of three main rock sequences: A Miocene basaltic shield, including a basal plutonic complex (that is igneous rock formed by solidification at considerable depth beneath the earth’s surface).A nested felsic (that is, igneous rocks that are relatively rich in elements that form feldspar and quartz) stratovolcano (which is built up of alternating layers of lava and ash).The youngest Pliocene volcanism.Fig. 2. Sketch map of La Gomera, showing the main towns and geology of the island. … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.