This category can only be viewed by members. To view this category, sign up by purchasing Annual subscription, 12 Month Subscription or Monthly subscription.

Book reviews: Fossils on the floor in the Nebraska State Capitol

Nebraska has an excellent geology record, which is celebrated by some fine mosaics at the Nebraska State Capitol. When the building was being constructed, and at the request of Prof Hartley Burr Alexander of the University of Nebraska Philosophy Department and from drawings by his colleague Dr Erwin H Barbour (former director of the University of Nebraska State Museum), the artist, Hildreth Meière, was asked to create a series of mosaics.

Book review: William Boyd Dawkins, the Victorian Science of Cave Hunting: Three Men in a Cavern, by Mark Wright

William Boyd Dawkins is an immensely fascinating character, who dominated British geology during his time, and yet is mostly forgotten today. He received a professorship and a knighthood, along with many top awards, and yet Mark Wright, in this excellent biography, describes him as “a liar and probably a cheat”.

Pico Partido: Volcanic perfection in the Canaries

Dr Trevor Watts (UK) Lanzarote is the easternmost island of the Canaries, less than 100 miles (about 150km) off the coast of Morocco. It is part of Spain, but not officially in the European Union and Pico Partido is a sharp, prominent peak near the centre of the island, between the small town of Mancha Blanca and the volcano of Timanfaya. The name means “divided mountain”, so called because the high peak is split by a deep fissure that seems to chop it in two. And it is enthralling. It is a basket of volcanic jewels to be treasured, particularly after the disappointment of the lack of access to Timanfaya itself (of which, more later). And Pico Partido is accessible, unlike much of the island where too many roads have no lay-bys or even a patch of cinder where you can pull in and explore. The geology of Lanzarote Lanzarote, with its volcanoes, is sitting on the tectonic plate that forms most of Africa. It is not near the edge, so it is not formed by one plate sinking under the other. Nor is it above a rising mass of magma, a hot spot. A little surprisingly, it is on a line of fractured rocks that stretches to the Atlas Mountains in North Africa, and further over to the European Alps. Fig. 1. The “Devil” sign that marks the start of the National Park, and the site of a parking space. The fractures formed, and are still moving, as a … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Thrihnukagigur: An icelandic volcano

Dr Trevor Watts (UK) In 2012, my wife Chris and I booked a volcano tour around the north of Iceland. At the time, it was our third visit to the country, so we knew of extra things we wanted to do. Before joining the group with Volcanic Experiences of Bromsgrove, in the UK (www.volcanicexperiences.co.uk), we decided to have three extra days on our own. An hour on the Internet allowed me to book three unforgettable events. That really is all it took – and, incredibly, every company sent an email confirmation of my booking before the afternoon was finished. Fig. 1. The high point of Eyjafyallajokull’s rim – still steaming and too hot to sit down for long. The first was a 4 x 4 ride and then a three and a bit kilometre hike to the top of the now-famous Eyjafjallajokull volcano – still so hot underfoot that a dog with another group fled howling from the top of the ridge (Iceland Rovers: icelandrovers.is or http://www.2iceland.is).The second was a two-hour ‘Ice and Fire’ flight over the central part of the island, especially over the multi-coloured landscape of Landmannalaugar, with the campsite right at the edge of a lava flow (Eagle Airline, booked using Nordic Visitor: iceland.nordicvisitor.com).And the third was a trip down inside the emptied-out magma chamber of a volcano – Thrihnukagigur (insidethevolcano.com). And this is the subject matter of this article.Fig. 2. A view in the central highlands of Landmannalaugar, with multi-coloured hillsides, steaming vents, glaciers and a … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Urban geology: New Red Sandstone at Amsterdam Airport

Stephen K Donovan (The Netherlands) In a country with a limited resource of pre-Quaternary geology in outcrop, the Netherlands nevertheless has a wealth of rock types in building stones (Donovan, 2015a; Donovan and Madern, in press), street furniture (Donovan, 2015b) and artificial ‘outcrops’ (Donovan, 2014). Perhaps the commonest rock type seen in Dutch cities is limestone, particularly imported Mississippian (Lower Carboniferous) limestones (van Roekel, 2007; Donovan and Madern, in press), but also Upper Cretaceous limestones from the province of Limburg in the south of the country (van Staalduinen et al., 1979, p. 47). Less common are massive sandstones, both used as building stones and occurring as boulders (Donovan, 2015b) – most of these that I have seen are, presumably, Pennsylvanian (Upper Carboniferous). The area of outcrop of Carboniferous rocks in the Netherlands, again in the province of Limburg, is limited. Carboniferous rocks used for buildings or street furniture are assumed to come largely, probably entirely, from the more extensive outcrops that are quarried elsewhere. One rock type that is not commonly encountered is red siliciclastic rocks such as siltstones, sandstones and conglomerates. This is despite the broad distribution of the Permo-Triassic New Red Sandstone (NRS) in northern Europe (Hounslow and Ruffell, 2006, fig. 13.2). In my pursuit of river-rounded boulders in the human environment of the Netherlands, I have only seen one NRS specimen of note – a coarse-grained sandstone with abundant gravel-sized fragments truncated by a scoured, erosive contact with an overlying conglomerate (Fig. 1). This is at the … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Henry VIII’s lost ruby: The ‘Regale’ of France

Steven Wade Veatch (USA) Glittering jewels, precious metals and religious relics – ranging from a spine from the Crown of Thorns to a twig from the Burning Bush, and sundry relics of saints – were important to all medieval monarchs as physical symbols of power, pomp and religious expression. King Henry VIII (1491-1547) of England was no different and had one of these venerable objects – a ruby. Fig. 1. Henry VIII, The king can be seen sporting several jewels in this 1531 painting. Henry prized the French Regale, a ruby fashioned into a cabochon. It remained in Henry’s private collection until he died at the age of 55 in 1547. Image public domain. A ruby (Al2O3) is a gemstone and a variety of the mineral corundum (aluminium oxide). It is one of the hardest minerals on Earth (9.0 on the Mohs mineral hardness scale of 10) and ranges in colour from pink to blood-red. Traces of the element chromium cause the red colour to bloom in rubies. The Latin word for red, ruber, is the basis for its name. The other variety of gem-quality corundum is sapphire. The ruby is extremely rare and considered the king of the gemstones, with its magnificent colour and exceptional brilliance. Louis VII (1120-1180) became the first King of France to visit England when he made a pilgrimage in 1179 to St Thomas Becket’s shrine at Canterbury. He spent the night there, and made several offerings, including the ‘Regale’, considered the finest gem in … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Fossil hunter’s guide to the Yorkshire coast

Samuel McKie, with Tilly Dalglish (UK) The stretch of coast from Speeton to Holderness is often forgotten by tourists and fossil collectors alike; certainly compared with places such as Whitby or destinations along the Jurassic Coast in Dorset. However, the shore of the East Riding has many beautiful sights and a rich history. From Viking settlements to eighteenth century sea battles, and Neolithic standing stones to Victorian seabird hunting, there is evidence here of humans fighting, farming, hunting and praying spanning many thousands of years. Fig. 1. Flamborough sponge bed at Sewerby Cliffs. But the stones of the shore tell a far older story. The coast starts chronologically at Speeton sands, where the Jurassic sandstones found at Whitby, Ravenscar, Scarborough and Filey end with a small Kimmeridge Clay exposure, before giving way to the Cretaceous strata of Flamborough Head. This small peninsular confronts the North Sea around 30km north of the Humber’s Spurn Point. Following the coast southward, exposures from almost the entire Cretaceous period are present (120 to 70Ma old). After this, the glaciation till (or boulder clay) smothers the land from Bridlington southwards. Fig. 2. Map of Flamborough Head and geological features. Flamborough has a rich variety of wildlife: orchids flower and seabirds nest on the chalky cliffs in summer, while seals and porpoises shelter in the bay in the winter months. This is recognised at an international level by the site of special scientific interest (SSSI) designation, which prohibits damage to the habitats. The RSPB and The … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

On the trail of Shetland’s volcano

Allen Fraser (UK) For a land area of just 1,468km2, yet within a staggering 2,731km of coastline, Shetland has probably the most complex and diverse geology and geomorphology to be found anywhere in the World. Part of Shetland’s Geopark plan was a suggestion from the community of Northmavine that a geological gateway be established to their area at Mavis Grind, and a volcano trail be set up around the dramatically beautiful Eshaness. Fig. 1. Map of Eshaness. Although it is hard to imagine today, some 350Ma ago, the peninsula of Eshaness was a fire and lava-belching volcano. In fact, the name “Esha Ness” comes from the Old Norse language and means the “Headland of Volcanic Ashes”. The beaches and cliffs of Eshaness show many fine examples of the rocks that formed in this ancient volcano and tell us something of the environment in which the volcano grew. Fig. 2. The Eshaness peninsula. Setting the scene Eshaness’ story begins some 400Ma (in the Devonian period) when three of the Earth’s tectonic plates converged and eventually formed a huge continent now referred to as Pangaea. This collision threw up the Caledonian Mountain chain that was originally of Himalayan proportions but which rapidly began to erode. Rivers carried the erosion products (sediments) into lakes that formed in valleys between the mountains and on the plains below the foothills of the mountain chain. At this time ‘Britain’ lay in equatorial latitudes so the rocks we see exposed today were often laid down in environments … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Geopark Shetland: A journey through the 35th European Geopark

Allen Fraser (UK) In September 2009, the Shetland Islands were awarded the accolade of becoming the thirty-fifth European Geopark. This is fantastic news for the isles. It acknowledges the importance of Shetland’s incredible geology and creates opportunities to promote it to an international market and develop partnerships with other members. When visiting, the best place to start your journey into Shetland’s ancient past is at Shetland Museum, in Lerwick. Here, displays take you back into the mists of time, revealing vanished landscapes and the amazing events behind them. All across Shetland, the rocks and landscapes tell an endless story – of oceans opening and closing, of mountain building and erosion, of ice ages and tropical seas, volcanoes, deserts and ancient rivers, of land use, climate change and sea level rise, and of minerals and miners. Around 360mya, a walk through where Lerwick is now, would have meant a wade across fast-flowing rivers, in a climate like that in Death Valley, California. How do we know? Well, if you take a stroll around Lerwick, and walk from the Knabb to the Sletts and out to the Sands of Sound, you can see for yourself. Here, flat-lying beds of thick, buff-coloured sandstone begin to acquire rounded pebbles and cobbles of pink and white quartz. These sandstone beds tell us that fast flowing rivers once deposited their loads in the area and that flash floods occasionally scoured the riverbed, leaving trains of far-travelled cobbles and pebbles embedded in the sandy layers. These rivers … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Geology of the Falkland Islands

Phil Stone (UK) Plate tectonics have produced some surprising juxtapositions, as the earth’s continental fragments have drifted and jostled over the eons. Microplates seem to have enjoyed most freedom of movement and none more so than that supporting the Falkland Islands. Though this archipelago is situated in the south-west corner of the South Atlantic Ocean, about 650km east from Tierra del Fuego and the Strait of Magellan, its geology tells of an African heritage. Charles Darwin provided the first evidence for that – although he didn’t appreciate it at the time. Fig. 1. A reconstruction of the Gondwana supercontinent at about 300mya. (© BGS/NERC.) HMS Beagle visited the Falkland Islands twice, in 1833 and 1834, and during the first visit Darwin discovered fossil shells, mostly brachiopods. His first impression had been unfavourable, but, after that discovery, he noted in his diary: The whole aspect of the Falkland Islands were however changed to my eyes … for I found a rock abounding with shells; and these of the most interesting age.” Darwin published his account of Falklands’ geology in 1846. The “interesting age” proved to be Devonian and, as more data were acquired, a close and surprising similarity was established with the fauna of equivalent age in South Africa. This similarity was soon extended to other aspects of the Falklands rock succession, while the geology of neighbouring Patagonia proved to be quite different. These relationships were not readily explicable without recourse to continental drift, so were largely ignored for many years, … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Diadematoid echinoids: A cryptic part of the tropical fossil record

Stephen K Donovan (The Netherlands) The writers of holiday brochures invariably fail to mention, let alone emphasise, the bad points of a location. For example, I’ve lived in both Jamaica and the Netherlands, and, for me, the thing that unites these two countries is the number of mosquitoes. However, as mosquitoes aren’t a good sales point with tourists, they are carefully ignored in holiday brochures and advertisements. Another Caribbean critter that doesn’t get mentioned until you actually arrive and want to go for a dip in the sea is the sea urchin, known in Jamaica as a sea egg. In truth, any danger to the unwary swimmer comes from the few species of regular echinoid that have long, pointed spines. These are found in many shallow water habitats, but are best concealed (and, therefore, most dangerous to the swimmer) in seagrass beds. The best protection from these echinoids is to wear an old pair of training shoes that you’d be happy to dispose of at the end of the vacation. However, without prior knowledge, who would take such a thing on holiday with them? Among these echinoids, the one most likely to ruin your holiday is the black, long-spined urchin, Diadema antillarum (Phillipi) in the Caribbean; which is broadly similar in morphology to the figured specimen, Diadema setosum (Leske) from Indonesia (Fig. 1). These echinoids have relatively small bodies, but numerous long, needle-like spines. These are, essentially, single calcite crystals. The unsuspecting swimmer treading on such an urchin will have … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Thomas Jefferson’s mammoth problem

James Smith (USA) Author of the Declaration of Independence, creator of the University of Virginia, a Founding Father and third president of the USA, Thomas Jefferson was a pioneer. Of this, you are undoubtedly aware. And, like most pioneers, Jefferson fostered an interest in virtually every aspect of science. This appetite for knowledge propelled him to organise the Lewis and Clark Expedition into the then-uncharted western area of the continent, brought under American governance by the Louisiana Purchase, which took place during his presidency. Considered an expert in civil engineering, anatomy, architecture, anthropology, physics, mechanics, meteorology, navigation, ethnology, botany and geography, it is not surprising that Jefferson was also a pioneer in our own field – palaeontology. “Science is my passion,” Thomas Jefferson wrote, “politics is my duty”. It could almost be said that he was as much of a pioneer in science as in law and politics – indeed, although we may remember his political pursuits as his most historically-resonant, his scientific achievements were pretty admirable. “Nature intended me for the tranquil pursuits of science,” he wrote, “rendering them my supreme delight.” Christopher Hitchens thought that, were Jefferson born a decade later, he would have been one of the finest palaeontologists in history. However, as it was, Jefferson was still looking at mountains and asking how shells got so high up on the mountaintop. The side project of many an eighteenth century American scientist was the study of mysterious teeth, bones and seven-foot tusks yielded by swamps and riverbeds. … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Jamaican fossil crabs

Stephen K Donovan (The Netherlands) and Joe SH Collins (UK) Decapod crustaceans (crabs) are among the most attractive of fossils. Yet, the beautifully preserved specimens seen in museum displays and dealers’ catalogues are in stark contrast with the usual haul of the collector, that is, scraps, commonly claws or (more rarely) bits of carapace, which we all find in (mainly) Cretaceous and Cenozoic sedimentary rocks. However, these bits and pieces represent most of the fossil record of crabs and, as such, are of importance to the systematist and anyone with an interest in aspects such as taphonomy and palaeoecology. Just as it is possible to identify a shark from a tooth or a cidaroid echinoid from a spine, so a crab claw can commonly provide data that permits its identification to the level of genus or species (Collins, 1999). The present authors, in collaboration with Roger Portell of the Florida Museum of Natural History at the University of Florida in Gainesville, have been collecting and studying the fossil crabs of Jamaica (and the wider Antilles) for over 20 years. Until the 1990s, reports of fossil crabs from the island were limited to a few fragmented specimens and rare, well-preserved carapaces (some retaining claws) or the isolated claws of mud shrimps (=Callianassa sensu lato), which were collected mainly from the Upper Cretaceous and Eocene by visiting geologists as an aside to their own research. They were sent to the British Museum (Natural History) for description. These early records were reviewed and … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Fossil insects from the Lower Cretaceous of southern England

Dr James E Jepson (UK) It was over 150 years ago that the first major work began on the fossil insects of the Lower Cretaceous of England. The pioneers were Victorian naturalists, including the Rev Osmond Fisher, John O Westwood and, in particular, the Rev Peter Bellinger Brodie. 1845 saw the publication of Brodie’s A History of the Fossil Insects in the Secondary Rocks of England, the earliest English language book on fossil insects and the first major study of the fossil insects of England. The Victorians collected and described many species from Wiltshire, Dorset and the Weald, and started the ball rolling for British palaeoentomology. The twentieth century saw little activity in British Cretaceous palaeoentomology. At this time, there was a shift towards the Palaeozoic insects from the Carboniferous, with Herbert Bolton leading the way – Bolton’s major work was published in a monograph on British Carboniferous insects in 1921–1922. A few descriptions were made on British Cretaceous insects in the early twentieth century, most notably Anton Handlirsch’s monograph of fossil insects (1906–1908) included some British Cretaceous insects; but there was no major studies completed. However, in the late twentieth century, interest in the Cretaceous insects of Britain was reawakened by Edmund A Jarzembowski, with his studies on Wealden insects and later the Purbeck insects with Robert A Coram. Into the twenty-first century, Jarzembowski and Coram have remained a driving force for the study of Lower Cretaceous insects of southern England and, through their work and their collaborations with … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Shedding light on an isolated skull: A new elasmosaur from the Late Cretaceous of Morocco

Dean Lomax (UK) The bodiless plesiosaur In 2011, a plesiosaur specimen, consisting of an isolated and crushed skull, was described. The collected skull sadly lacked any postcranial remains, but was identified as an elasmosaurid plesiosaur and considered to be something new. Therefore, it was given the name Zarafasaura oceanis. The skull was collected in the Sidi Daoui area, near the city of Oued Zem, situated within the Khouribga Province of the northeast Oulad Abdoun Basin in Morocco. There, the phosphates date to the Maastrichtian Stage of the Cretaceous, the last stage of the Mesozoic Era, famous for many fossils, such as Tyrannosaurus rex from the USA. The study suggested that Zarafasaura shared close connections with other elasmosaurids from the Late Cretaceous of North America and Japan. The elasmosaurs had the longest necks of any plesiosaurs and flourished during the Maastrichtian. It was hoped that future discoveries of more complete remains would shed light on the general appearance and understanding of Zarafasaura. Fig. 1. Mounted skeleton of Zarafasaura oceanis (WDC CMC-01) at the Wyoming Dinosaur Center. (Photograph by Dean Lomax.) ‘The body that fits the head’ In April 2004, seven years before the description of Z. oceanis, an almost complete plesiosaur skeleton was discovered in the Sidi Daoui area in Morocco, at the same location as the skull discussed previously. The specimen (museum number WDC CMC-01) was excavated by a small team and covered by five large plaster jackets (to protect the fragile bones). It was largely articulated, consisting of a … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Flexomornis howei: A tale of amateur and professional cooperation

Kris Howe (USA) When you think of Texas, what comes to mind? It may be wide open spaces, longhorn cattle, cowboys and ten gallon hats. Now, there’s something else to add to the list – the oldest, definitive bird fossil in North America. That bird is Flexomornis howei, from the Woodbine Formation (lower Middle Cenomanian) near Grapevine, Texas. I first encountered the bones while prospecting potential fossil sites around Grapevine Lake. This is located just north of Dallas-Forth Worth International Airport, in north-eastern Tarrant County. One exposure near the lake soon produced a large number of fossils eroding out on the surface. They included petrified and carbonised wood, amber, at least two types of turtle, two types of crocodile, numerous remains of bony fish, shark teeth and vertebrae, parts of an ornithopod, a nodosaur, ostedeoderms, and a few scraps of small theropods. Fig. 1. Howe, Florillo and Tykoski presenting the Flexomornis howei remains at a press conference. In addition, there was also a cluster of delicate and unusual bones that looked like nothing I had ever seen before. I contacted Dr Ron Tykoski, at the Museum of Nature and Science in Dallas, for help with the identification. Dr Tykoski had been very helpful in the past with tough identifications, so I knew he could help. He inspected the bones and said that they looked like they were from a bird, but he was hesitant to get too excited – there were no known birds from the Woodbine Formation. Dr Tykoski … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Fossil sword pommel from Malaya

Ruel A Macaraeg (USA) Fossil hunters have a well-deserved reputation for finding rare things in difficult places. However, there are times when fossils are ‘hidden’ in plain sight as material for the decorative arts. While not as informative as specimens found in situ and undisturbed, nevertheless, they still have palaeontological interest and may yet be of genuine scientific value. The pommel is a carved Stegodon molar, as a stylised cockatoo head.The fossil material on my kris is attached as a pommel to a wooden grip, bound with metal wire.Malay kris sword (keris sundang), Peninsular Malay,s 19th century.This short discussion will take that optimistic approach with a fossil Stegodon molar attached to a Malay sword in my collection. The Stegodon genus, widely acknowledged as closely ancestral to modern elephants, lived in habitats across southern Asia into the Pleistocene, so humans may have developed an awareness and liking for Stegodon remains during their co-existence (Rich, Rich, Fenton & Fenton 1989). Anyway, by early modern times, Stegodon molars (‘garham gaja’ in Malay) were a recognised luxury commodity, whose biological origins were understood and to which totemic significance was attached. Form and context My sword belongs to a class of bladed weapons falling under the general rubric of ‘kris’. Krisses are documented from southern India through mainland Southeast Asia and eastward to the Philippines, but are concentrated in Malaysia and Indonesia (especially the Malaya peninsular, Sumatra, Java and Bali). While there is an unmistakable relationship in these weapons’ blade shapes (particularly the asymmetrical shoulders … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

White Scar Cave

William Bagshaw (UK) White Scar Cave takes its name from the limestone outcrops or “scars” that overlook the entrance. This part of the Yorkshire Dales National Park is dominated by the ‘Three Peaks’ – Ingleborough, Pen-y-ghent and Whernside. Their distinctive shapes are due to their geological structure, which consists of nearly horizontal layers of grit and shale that rest on the Great Scar Limestone. White Scar Cave was formed under Ingleborough between 400,000 and 100,000 year ago, in warmer periods that occurred between the Ice Ages of the Pleistocene. In August 1923, Christopher Francis Drake Long, a student on vacation from Cambridge University, discovered a slight fissure on the slopes of Ingleborough. He decided to investigate. Wearing only his summer walking clothes of shirt and shorts, and lighting his way with candles stuck in the brim of his hat, he crawled into the low passage. Spurred on by the distant roar of water, he struggled over jagged stones and across rock pools until, eventually, he found himself at the foot of a waterfall. He continued along a stream passage to a cascade and then returned to the surface to announce his find. On a subsequent expedition, Long discovered a subterranean lake. Undeterred by the cold water, he swam across it. A massive boulder, later nicknamed ‘Big Bertha’, lay wedged in the passage beyond. He squeezed past, only to find his path blocked by a boulder choke (a jumbled mass of rocks). Long intended to open the cave to visitors. However, … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Fleshing-out a dinosaur-eating snake

Tyler Keillor (USA) In the March 2010 issue of the open-access journal, PLoS Biology, palaeontologist Jeff Wilson and colleagues give an account of a truly unique and amazing fossil discovery. In their article entitled Predation upon Hatchling Dinosaurs by a New Snake from the Late Cretaceous of India, the snake Sanajeh indicus is described, based upon multiple specimens. In particular, one snake fossil was found in a nest of sauropod eggs, looped around a crushed egg, with hatchling sauropod bones next to the broken egg. The very moment of predation seems to have been preserved in rock, as a sudden plug of sand from a flash flood smothered the animals, preserving them for millions of years. Fig. 1. Small-scale maquette to help visualise and plan reconstructing the scene at full scale. The sediment analysis hadn’t been completed at this stage, so vegetation tentatively filled the nest in early mock-ups. Jeff contacted me about creating a reconstruction of this fossilised scene ‘in the flesh’ as a display. I had previously collaborated with him while he and Paul Sereno were studying the bizarre African sauropod, Nigersaurus taqueti, at the University of Chicago’s Fossil Laboratory. For that project, I created a restored skull model of the dinosaur for its unveiling, as well as a life-sized flesh model of the head and neck. These models are an extremely effective, visual means of conveying new discoveries to the public. The value of a model is underscored when a fossil isn’t very photogenic or might otherwise … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Triassic salt in the High Atlas of Morocco

Chellai El Hassane (Morocco), Ghanmi Mohamed (Tunisia) and Doblaas Miguel (Spain) The Triassic terrestrial deposits at the northern edge of the High Atlas near Marrakech are mainly represented by thick sequences of massively layered, red sandstone. These are topped by a formation of silt and pink-brown clay containing large deposits of evaporites consisting mainly of rock salt and gypsum. The silt and clay formations form domed structures characterised by intruded gypsum and irregular (disharmonic) folds capped by fine sandstone beds, as well as by small, isolated anticlines only a few metres in scale. The direction of folding shows no relationship to that of the major tectonic folding that gave rise to the Atlas Mountains. In contrast, the folding is closely linked to the deposition of rock salt and gypsum in the High Atlas near Marrakech during the Late Triassic. The same phenomenon is observed in the passive margins of the Atlantic of western Morocco. Lithostratigraphy These Triassic formations are the most prominent features of the landscape, with thicknesses that can reach up to 400m. They consist essentially of two formations: F5 (the Oukaïmeden sandstone) and F6 (the Superiors Silts), which correspond to the uppermost part of the Triassic, as defined in the Ourika valley by Biron (1982). The first formation consists of thick (400m) beds of detrital sandstones with fine to medium-sized, diamond-shaped sedimentary bodies, interbedded with layers (a few centimetres to several metres thick) composed of red clay as well as red and brown silts. These are overlain by … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Mammoths in the freezer

Adrian Lister (UK) As palaeontologists, we are used to relying on the preserved hard parts of extinct organisms – shells, bones, teeth and so on – to reconstruct their appearance and adaptations in life. The reconstruction of soft tissue relies upon our knowledge of related living forms, plus clues such as the scars of muscle attachments on bones or shells. Exceptions include body outlines preserved in the fine-grained sediments of Lagerstätte, such as in the Eocene of Messel (Germany) or the Cambrian Burgess Shale (Canada); or, even more rarely, organisms preserved in 3D, of which the most familiar source is Tertiary amber. Among mammals, the most celebrated case of exceptional preservation is provided by the carcasses preserved in permafrost in Siberia (Russia), Alaska (USA) and the Yukon (Canada), at localities lying almost exclusively north of the Arctic Circle (Lister and Bahn, 2007). Almost all date to the last glaciation, with radiocarbon dates typically in the range 50 to 10,000 years ago. Species from which partial or whole carcasses have been recovered include bison, horse, wolverine, woolly rhinoceros and, above all, the woolly mammoth. The reason for the preponderance of these is unclear, although it may partly be a matter of reporting bias, other species being considered less interesting or less valuable when discovered by local people. Even so, not more than a dozen or so complete or largely complete mammoth carcasses have been recovered to date. While Siberian natives have doubtless been finding these remains for millennia, the first carcass … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Geology at Loch Lomond and the Trossachs National Park

Ruth Crosbie (UK) Fig. 1. The outstaniing landscape and scenery, seen today at Lock Lomond and the Trossachs National Park, has been shaped over millions of years by geomorphological processes. The Loch Lomond and the Trossachs National Park has a unique and very visible geological character. This, and the geomorphological processes that have taken place in the area have been fundamental in shaping the outstanding landscape and scenery of the park. Rolling, relatively low-lying farmland along the southern margins of the park is underlain by Silurian to Carboniferous sedimentary rocks. North of the Highland Boundary Fault, this rolling country gives way to increasingly mountainous land, underlain by more ancient metamorphosed rocks. Many of the visible landforms represent the actions of glacial processes. Classic ‘U’-shaped valleys, such as the north Loch Lomond basin and Strathfillan, were carved by glacial ice. Other features, such as drumlins near Tyndrum and the rolling landscapes south of the Highland Boundary Fault, are the result of sediments deposited by melting glaciers. Such contrasts in the geology and landforms are reflected in similar marked contrasts in land-use patterns. Geological Structure The park contains a wealth of geological and geomorphological features, including some of national and international importance. The Highland Boundary Fault, which separates the Highlands from the Scottish Midland Valley, is well known. Within the park, the fault runs from Arden through Balmaha, Aberfoyle and Loch Venachar, and its line is clearly visible through the islands of southern Loch Lomond. Although less well known, other features include … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Windmills and building stones: Antigua, West Indies

Stephen K Donovan (The Netherlands), David AT Harper (UK) and Roger W Portell (USA) In his 2014, Ted Nield (2014) reflects on building stones and what they tell the geologist about where they are. Once upon a time, building stones in Britain were derived locally and told the informed observer something of the local geology (apart from, of course, the exotic stones imported for banks and office blocks). That is, they were built of local stone from the local quarry. Today, stone is imported from as far afield as China, where once they would have been derived locally by horse and cart or canal boat. One place where local stone is still used is Antigua in the Lesser Antilles. For example, Jackson and Donovan (2013) described an attractive, green chloritized tuff, which is used throughout the island as a bright and distinctive building stone. Many old structures in rural areas are still constructed of stone, such as walls, buildings (including ruins) and, the subject of this article, disused windmills. For a general introduction to the geology of Antigua, see Weiss (1994) or Donovan et al (2014). All major stratigraphic units are Upper Oligocene; the regional dip is to the northeast. Betty’s Hope The Betty’s Hope site, in the parish of Saint Peter in eastern Antigua (Fig. 1), is an open air monument administered by the Museum of Antigua and Barbuda. Fig. 1. Outline map of Antigua (redrawn and modified after Weiss, 1994, fig. 3), showing the principal geological subdivisions and … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.

Meat-eating dinosaur from Argentina with a bird-like breathing system

Steve Koppes (USA) Mendoza, Argentina. The remains of a new ten-meter-long predatory dinosaur discovered along the banks of Argentina’s Rio Colorado are helping to unravel how birds evolved their unusual breathing system. In September 2008, palaeontologists, led by the University of Chicago’s Paul Sereno, a National Geographic Explorer-in-Residence, have published an article about their discovery in the online journal Public Library of Science ONE. Joining Sereno to announce the discovery at a news conference in Mendoza, Argentina, held on 29 September 2008, were Ricardo Martinez and Oscar Alcober, both of the Universidad Nacional de San Juan, Argentina. The discovery of this dinosaur builds on decades of paleontological research indicating that birds evolved from dinosaurs. Fig. 1. Flesh rendering of the predator Aerosteon with the body wall removed to show a reconstruction of the lungs (red) and air sacs (other colours) as they might have been in life. (Drawing: Todd Marshall c 2008, courtesy of Project Exploration) “Among land animals, birds have a unique way of breathing. The lungs actually don’t expand,” Sereno said. Instead, birds have developed a system of bellows, or air sacs, which help pump air through the lungs. This is the reason birds can fly higher and faster than bats, which, like all mammals, expand their lungs in a less efficient breathing process. Discovered by Sereno and his colleagues in 1996, the new dinosaur is named Aerosteon riocoloradensis (meaning “air bones from the Rio Colorado”). Sereno explained that “Aerosteon, found in rocks dating to the Cretaceous period … Read More

To access this post, you must purchase Annual subscription, 12 Month Subscription or Monthly subscription.